First-Order Logic with Connectivity Operators

NICOLE SCHIRRMACHER, SEBASTIAN SIEBERTZ, and ALEXANDRE VIGNY, University of

Bremen, Germany

First-order logic (FO) can express many algorithmic problems on graphs, such as the independent set and dominating set problem parameterized by solution size. On the other hand, FO cannot express the very simple algorithmic question whether two vertices are connected. We enrich FO with connectivity predicates that are tailored to express algorithmic graph problems that are commonly studied in parameterized algorithmics. By adding the atomic predicates $\operatorname{conn}_{k}\left(x, y, z_{1}, \ldots, z_{k}\right)$ that hold true in a graph if there exists a path between (the valuations of) x and y after (the valuations of) z_{1}, \ldots, z_{k} have been deleted, we obtain separator logic FO + conn. We show that separator logic can express many interesting problems such as the feedback vertex set problem and elimination distance problems to first-order definable classes. Denote by FO + conn $_{k}$ the fragment of separator logic that is restricted to connectivity predicates with at most $k+2$ variables (that is, at most k deletions), we show that $\mathrm{FO}+$ conn $_{k+1}$ is strictly more expressive than $\mathrm{FO}+\mathrm{conn}_{k}$ for all $k \geq 0$. We then study the limitations of separator logic and prove that it cannot express planarity, and, in particular, not the disjoint paths problem. We obtain the stronger disjoint-paths logic FO +DP by adding the atomic predicates disjoint-paths ${ }_{k}\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right]$ that evaluate to true if there are internally vertex-disjoint paths between (the valuations of) x_{i} and y_{i} for all $1 \leq i \leq k$. Disjoint-paths logic can express the disjoint paths problem, the problem of (topological) minor containment, the problem of hitting (topological) minors, and many more. Again we show that the fragments $\mathrm{FO}+\mathrm{DP}_{k}$ that use predicates for at most k disjoint paths form a strict hierarchy of expressiveness. Finally, we compare the expressive power of the new logics with that of transitive-closure logics and monadic second-order logic.

CCS Concepts: • Theory of computation \rightarrow Finite Model Theory; • Mathematics of computing \rightarrow Combinatorics.
Additional Key Words and Phrases: first-order logic, graph theory, connectivity
ACM Reference Format:
Nicole Schirrmacher, Sebastian Siebertz, and Alexandre Vigny. 2023. First-Order Logic with Connectivity Operators. ACM Trans. Comput. Logic 24, 4, Article 30 (July 2023), 22 pages. https://doi.org/10.1145/3595922

1 INTRODUCTION

Logic provides a very elegant way of formally describing computational problems. Fagin's celebrated result from 1974 [17] established that existential second-order logic captures the complexity class NP. Fagin thereby provided a machine-independent characterization of a complexity class and initiated the field of descriptive complexity theory. Many other complexity classes were later characterized by logics in this theory. Today it remains one of the major open problems whether there exists a logic capturing PTime.

[^0]In 1990 Courcelle proved that every graph problem definable in monadic second-order logic (MSO) can be decided in linear time on graphs of bounded treewidth [10]. This theorem has a much more algorithmic (rather than a complexity-theoretic) flavor, in the sense that, from a logical description of a problem, it derives an algorithmic approach on how to solve it on certain graph classes. Grohe in his seminal survey coined the term algorithmic meta-theorem for such theorems that provide general conditions on a problem and on the input instances that, when satisfied, imply the existence of an efficient algorithm for the problem [25]. Courcelle's theorem for MSO was extended to graph classes with bounded cliquewidth [11] and it is known that these are essentially the most general graph classes on which efficient MSO model checking [22,29] is possible. MSO is a powerful logic that can express many important algorithmic problems on graphs. With quantification over edges, we can for example express the existence of a Hamiltonian path, the existence of a fixed minor or topological minor, the disjoint paths problem, and many deletion problems. For a property Π, the task in the Π-deletion problem is to find in a given graph G a minimum-size subset S of $V(G)$ such that the graph $G-S$ obtained from G by removing S has the property Π. Important examples of Π-deletion problems are the feedback vertex set problem, the odd cycle transversal problem, or the problem of hitting all minors or topological minors from a given list \mathcal{F}. We refer to [13] for the formal definitions of the mentioned algorithmic problems. Also, many elimination distance problems recently studied [6] in parameterized algorithmics can be expressed in MSO. However, as we have seen, this expressiveness comes at the price of algorithmic intractability already on very restricted graph classes. This cannot be a surprise as e.g. the Hamiltonian path problem is NP-complete already on planar graphs of maximum degree 3 [7].

First-order logic (FO) is much weaker than MSO and not surprisingly, the model checking problem can be solved efficiently on much more general graph classes. FO model checking is fixed-parameter tractable on a subgraph-closed class \mathscr{C} if and only if \mathscr{C} is nowhere dense [26] and a recent breakthrough result showed that it is fixed-parameter tractable on a class \mathscr{C} of ordered graphs if and only if \mathscr{C} has bounded twin-width [4]. FO is weaker than MSO but it can still express many important problems such as the independent set problem and dominating set problem parameterized by solution size, the Steiner tree problem parameterized by the number of Steiner vertices, and many more problems. On the other hand, first-order logic cannot even express the algorithmically extremely simple problem of whether a graph is connected. Also, the other algorithmic problems mentioned before are not expressible in FO, even though some of them are fixed-parameter tractable on general graphs. For example, we can efficiently test for a fixed minor or topological minor and solve the disjoint paths problem [36]. Many Π-deletion problems are fixed-parameter tractable, see e.g. [12, 20, 33], as well as many elimination distance problems [1, 18].

The fact that first-order logic can only express local problems is classically addressed by adding transitiveclosure or fixed-point operators, see e.g. [16, 24, 30]. Unfortunately, this again comes at the price of intractable model checking for very restricted graph classes. For example, even the model checking problem for the very restricted monadic transitive-closure logic TC^{1} studied by Grohe [25], is AW[\star]-hard on planar graphs of maximum degree at most 3 [25, Theorem 7.3]. Extensions of first-order logic with a reachability predicate or with predicates for reachability with an additional regular expression (over labeled transitions) are studied for example in $[9,15,38]$. These extensions play an important role for specification in system analysis, as they can express safety and liveness conditions (in transition systems). The main focus of study for these latter logics are questions of decidability. Furthermore, they fall short of being able to express the above mentioned algorithmic graph problems.

This motivates our present work in which we enrich first-order logic with more powerful connectivity predicates. The extensions are tailored to express algorithmic graph problems that are studied in recent parameterized algorithmics. Adding the atomic predicate $\operatorname{conn}_{0}(x, y)$ that evaluates to true on a graph G if (the valuations of) x and y are connected in G yields the mentioned extension of first-order logic with a reachability predicate. This predicate easily generalizes to directed graphs but for simplicity, we work with undirected graphs only. Of course,
with this predicate we can express connectivity of graphs, however, it falls short of expressing other interesting graph problems, e.g. it cannot express that a graph is acyclic. We hence introduce more general predicates $\operatorname{conn}_{k}\left(x, y, z_{1}, \ldots, z_{k}\right)$, parameterized by a number k, that evaluate to true on a graph G if (the valuations of) x and y are connected in G once (the valuations of) z_{1}, \ldots, z_{k} have been deleted. The interplay of these predicates with the usual nesting of first-order quantification makes the new logic $\mathrm{FO}+$ conn already quite powerful. For example, we can express simple graph problems such as 2-connectivity by $\forall z \forall x \forall y\left(x \neq z \wedge y \neq z \rightarrow \operatorname{conn}_{1}(x, y, z)\right)$. We can also express many deletion problems, such as the feedback vertex set problem, and the elimination distance to bounded degree, and more generally, elimination distance to any fixed first-order property.

We also point to Mikołaj Bojańczyk's work [3], who independently introduced FO + conn and proposed the name separator logic. He studied a variant of star-free expressions for graphs and showed that these two formalisms for defining graph languages are equivalent. We follow his suggestion for the name of the new logic and thank Mikołaj for the discussion on separator logic.
In Section 3 we study the expressive power of separator logic. We give examples of problems expressible with separator logic as well as proofs that certain problems, such as planarity and in particular the disjoint paths problem, are not expressible in separator logic. We show that $(k+2)$-connectivity of a graph cannot be expressed with only conn_{k} predicates and conclude that the restricted use of these predicates induces a natural hierarchy of expressiveness.

The fact that planarity and the disjoint paths problem cannot be expressed in separator logic motivates us to define an even stronger logic that can express these problems. We define atomic predicates of the form disjoint-paths ${ }_{k}\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right]$ that evaluate to true if and only if there are k internally vertex-disjoint paths between (the valuations of) x_{i} and y_{i} for all $1 \leq i \leq k$. Connectivity of x and y can be tested by disjoint-paths ${ }_{1}[(x, y)]$. More generally, the so obtained disjoint-paths logic FO +DP strictly extends separator logic. With this more powerful logic, we can test if a graph contains a fixed minor or topological minor, and in particular, test for planarity. In combination with first-order quantification, we can also express many Π-deletion problems such as the problem of hitting all minors or topological minors from a given list \mathcal{F}. On the other hand, we cannot express the odd cycle transversal problem, as we cannot even express bipartiteness of a graph. We study the expressive power of FO + DP in Section 4. Among other results, we prove that again an increase in the number of disjoint paths in the predicates leads to an increase in expressive power.

Note that while it would be desirable to be able to express bipartiteness, which is equivalent to 2-colorability, it is not desirable to express general colorability problems, as we aim for logics that are tractable on planar graphs and beyond, while the 3 -colorability problem is NP-complete on planar graphs. This example shows again that it is a delicate balance between expressiveness and tractability and it will be a challenging and highly interesting problem in future work to find the right set of predicates to express even more algorithmic graph problems while at the same time having tractable model checking.
We conclude the paper in Section 5 with a comparison between the newly introduced logics and more established ones, like MSO and transitive-closure logics.

2 PRELIMINARIES

Graphs. In this paper, we deal with finite and simple undirected graphs. Let G be a graph. We write $V(G)$ for the vertex set of G and $E(G)$ for its edge set. For a set $X \subseteq V(G)$ we write $G[X]$ for the subgraph of G induced by X and $G-X$ for the subgraph induced by $V(G) \backslash X$. For a singleton set $\{v\}$ we write $G-v$ instead of $G-\{v\}$. A path P in G is a subgraph on distinct vertices v_{1}, \ldots, v_{t} with $\left\{v_{i}, v_{i+1}\right\} \in E(P)$ for all $1 \leq i<t$ and a path P is said to connect its endpoints v_{1} and v_{t}. Two paths are internally vertex-disjoint if and only if every vertex that appears in both paths is an endpoint of both paths. The graph G is connected if every two of its vertices are connected by a path. It is k-connected if G has more than k vertices and $G-X$ is connected for every subset
$X \subseteq V(G)$ of size strictly smaller than k. A cycle C in G is a subgraph on distinct vertices $v_{1}, \ldots, v_{t}, t \geq 3$, with $\left\{v_{i}, v_{i+1}\right\} \in E(C)$ for all $1 \leq i<t$ and $\left\{v_{t}, v_{1}\right\} \in E(C)$. An acyclic graph is a forest and a connected acyclic graph is a tree.

A graph H is a minor of G, denoted $H \leqslant G$, if for all $v \in V(H)$ there are pairwise vertex-disjoint connected subgraphs G_{v} of G such that whenever $\{u, v\} \in E(H)$, then there are $x \in V\left(G_{u}\right)$ and $y \in V\left(G_{v}\right)$ with $\{x, y\} \in E(G)$. The subgraph G_{v} is called the branch set of v in G. The graph H is a topological minor of G, denoted $H \leqslant^{\text {top }} G$, if for all $v \in V(H)$ there is a distinct vertex x_{v} in G and for all $\{u, v\} \in E(H)$ there are internally vertex-disjoint paths $P_{u v}$ in G with endpoints x_{u} and x_{v}. The vertices x_{v} are called the principal vertices of the topological minor model of H in G. A graph is planar if and only if it contains neither K_{5}, the complete graph on 5 vertices, nor $K_{3,3}$, the complete bipartite graph with two partitions of size 3, as a minor [40].

Logic. In this work, we deal with structures over purely relational signatures. A (purely relational) signature is a collection of relation symbols, each with an associated arity. Let σ be a signature. A σ-structure \mathfrak{A} consists of a non-empty set A, the universe of \mathfrak{A}, together with an interpretation of each k-ary relation symbol $R \in \sigma$ as a k-ary relation $R^{\mathfrak{U}} \subseteq A^{k}$. For a subset $X \subseteq A$ we write $\mathfrak{A}[X]$ for the substructure induced by X. A partial isomorphism between σ-structures \mathfrak{A} and \mathfrak{B} is an isomorphism between $\mathfrak{A}[X]$ and $\mathfrak{B}[Y]$ for some subset $X \subseteq A$ of the universe A of \mathfrak{A} and some subset $Y \subseteq B$ of the universe B of \mathfrak{B}.

We assume an infinite supply VAR of variables. First-order σ-formulas are built from the atomic formulas $x=y$, where x and y are variables, and $R\left(x_{1}, \ldots, x_{k}\right)$, where $R \in \sigma$ is a k-ary relation symbol and x_{1}, \ldots, x_{k} are variables, by closing under the Boolean connectives \neg, \wedge and \vee, and by existential and universal quantification $\exists x$ and $\forall x$. A variable x not in the scope of a quantifier is a free variable. A formula without free variables is a sentence. The quantifier $\operatorname{rank} \operatorname{qr}(\varphi)$ of a formula φ is the maximum nesting depth of quantifiers in φ. We write $\mathrm{FO}_{\sigma}[q]$ for the set of all FO σ-formulas of quantifier rank at most q, or simply FO $[q]$ if σ is clear from the context. A formula without quantifiers is called quantifier-free.
If \mathfrak{A} is a σ-structure with universe A, then an assignment of the variables in \mathfrak{A} is a mapping $\bar{a}: \operatorname{VAR} \rightarrow A$. We use the standard notation $(\mathfrak{A}, \bar{a}) \vDash \varphi(\bar{x})$ or $\mathfrak{A} \vDash \varphi(\bar{a})$ to indicate that φ is satisfied in \mathfrak{A} when the free variables \bar{x} of φ have been assigned by \bar{a}. We refer e.g. to the textbook [30] for more background on first-order logic.

3 SEPARATOR LOGIC

In this section, we study the expressive power of separator logic FO + conn. Formally, we assume that σ is a signature that does not contain any of the relation symbols conn k for all $k \geq 0$, and that it does contain a binary relation symbol E, representing an edge relation. We assume that E is always interpreted as an irreflexive and symmetric relation and connectivity will always refer to this relation. We let $\sigma+\operatorname{conn}:=\sigma \cup\left\{\operatorname{conn}_{k}: k \geq 0\right\}$, where each conn_{k} is a $(k+2)$-ary relation symbol.

Definition 3.1. The formulas of $(\mathrm{FO}+\mathrm{conn})_{\sigma}$ are the formulas of $\mathrm{FO}_{\sigma+\mathrm{conn}}$. We usually simply write $\mathrm{FO}+$ conn, when σ is understood from the context.

For a σ-structure \mathfrak{A}, an assignment \bar{a} and an $\mathrm{FO}+$ conn formula $\varphi(\bar{x})$, we define the satisfaction relation $(\mathfrak{A}, \bar{a}) \vDash \varphi(\bar{x})$ as for first-order logic, where an atomic predicate $\operatorname{conn}_{k}\left(x, y, z_{1}, \ldots, z_{k}\right)$ is evaluated as follows. Assume that the universe of \mathfrak{A} is A and let $G=\left(A, E^{\mathfrak{d}}\right)$ be the graph on vertex set A and edge set $E^{\mathfrak{Y}}$. Then ($\left.\mathfrak{A}, \bar{a}\right)$ is a model of $\operatorname{conn}_{k}\left(x, y, z_{1}, \ldots, z_{k}\right)$ if and only if $\bar{a}(x)$ and $\bar{a}(y)$ are connected in $G-\left\{\bar{a}\left(z_{1}\right), \ldots, \bar{a}\left(z_{k}\right)\right\}$.

Note in particular that if $\bar{a}(x)=\bar{a}\left(z_{i}\right)$ or $\bar{a}(y)=\bar{a}\left(z_{i}\right)$ for some $i \leq k$, then $(\mathfrak{M}, \bar{a}) \not \vDash \operatorname{conn}_{k}\left(x, y, z_{1}, \ldots, z_{k}\right)$.
We write $\mathrm{FO}+\operatorname{conn}_{k}$ for the fragment of $\mathrm{FO}+$ conn that uses only $\operatorname{conn}_{\ell}$ predicates for $\ell \leq k$. The quantifier rank of an $\mathrm{FO}+$ conn formula is defined as for plain first-order logic. For structures \mathfrak{A} with universe A and $\bar{a} \in A^{m}$ and \mathfrak{B} with universe B and $\bar{b} \in B^{m}$, we write $(\mathfrak{H}, \bar{a}) \equiv_{\text {conn }}(\mathfrak{B}, \bar{b})$ if (\mathfrak{A}, \bar{a}) and (\mathfrak{B}, \bar{b}) satisfy the same FO + conn formulas, that is, for all $\varphi(\bar{x}) \in \mathrm{FO}+$ conn we have $\mathfrak{A} \vDash \varphi(\bar{a}) \Leftrightarrow \mathfrak{B} \vDash \varphi(\bar{b})$. Similarly, we write
$(\mathfrak{A}, \bar{a}) \equiv_{\operatorname{conn}_{k}}(\mathfrak{B}, \bar{b})$ and $(\mathfrak{A}, \bar{a}) \equiv_{\operatorname{conn}_{k, q}}(\mathfrak{B}, \bar{b})$ if (\mathfrak{A}, \bar{a}) and (\mathfrak{B}, \bar{b}) satisfy the same $\mathrm{FO}+\operatorname{conn}_{k}$ formulas and the same $\mathrm{FO}+\operatorname{conn}_{k}$ formulas of quantifier rank at most q, respectively.

3.1 Expressive power of separator logic

We now give examples of graph problems that are expressible with separator logic.
Example 3.2. Connectivity is expressible in $\mathrm{FO}+\mathrm{conn}_{0}$ by the formula

$$
\forall x \forall y\left(\operatorname{conn}_{0}(x, y)\right) .
$$

More generally, for every non-negative integer $k,(k+1)$-connectivity can be expressed by the formula

$$
\forall x \forall y \forall z_{1} \ldots \forall z_{k}\left(\bigwedge_{1 \leq i \leq k}\left(x \neq z_{i} \wedge y \neq z_{i}\right) \rightarrow \operatorname{conn}_{k}\left(x, y, z_{1}, \ldots, z_{k}\right)\right) .
$$

Example 3.3. We can express that there exists a cycle by

$$
\exists x \exists y\left(E(x, y) \wedge \exists z\left(\operatorname{conn}_{1}(z, x, y) \wedge \operatorname{conn}_{1}(z, y, x)\right)\right)
$$

hence, that a graph is acyclic by the negation of that formula. We write $\psi_{\text {acyclic }}$ for that formula. We can express that a graph is a tree by stating that it is connected and acyclic.

We can conveniently express deletion problems by relativizing formulas as follows. For a formula φ that does not contain z as a free variable write $\operatorname{del}(z)[\varphi]$ for the formula obtained from φ by recursively replacing every subformula $\exists x \psi$ by $\exists x(x \neq z \wedge \psi)$, every subformula $\forall x \psi$ by $\forall x(x \neq z \rightarrow \psi)$ and every atomic formula $\operatorname{conn}_{k}\left(x, y, z_{1}, \ldots, z_{k}\right)$ by $\operatorname{conn}_{k+1}\left(x, y, z_{1}, \ldots, z_{k}, z\right)$. Then $(\mathfrak{A}, \bar{a}) \vDash \operatorname{del}(z)[\varphi]$ if and only if $(\mathfrak{A}-\bar{a}(z), \bar{a}) \vDash \varphi$, where $\mathfrak{A}-\bar{a}(z)$ denotes the substructure induced on the universe of \mathfrak{A} without $\bar{a}(z)$.

Example 3.4. We can state the existence of a feedback vertex set of size k by

$$
\exists z_{1} \operatorname{del}\left(z_{1}\right)\left[\cdots\left[\exists z_{k} \operatorname{del}\left(z_{k}\right)\left[\psi_{\text {ac } y c l i c}\right] \ldots\right] .\right.
$$

We can of course use the same principle to express any Π-deletion problem that is $\mathrm{FO}+$ conn expressible.
We can also express that a formula φ holds in a connected component.
Example 3.5. We write $\operatorname{comp}(x)$ for the connected component of (the valuation of) x. For a formula φ we write $\varphi^{[\operatorname{comp}(x)]}$ for the formula obtained from φ by recursively replacing all subformulas $\exists y \psi$ by $\exists y\left(\operatorname{conn}_{0}(x, y) \wedge \psi\right)$ and all subformulas $\forall y \psi$ by $\forall y\left(\operatorname{conn}_{0}(x, y) \rightarrow \psi\right)$. Then $(\mathfrak{A}, \bar{a}) \vDash \varphi^{[\operatorname{comp}(x)]}$ if and only if $(\mathfrak{H}[\operatorname{comp}(\bar{a}(x))], \bar{a}) \vDash \varphi$, where $\mathfrak{A}[\operatorname{comp}(\bar{a}(x))]$ denotes the substructure induced on the connected component of $\bar{a}(x)$.

Using this relativization to connected components, we can also express many elimination distance problems.
Example 3.6. The elimination distance to a class \mathscr{C} of graphs measures the number of recursive deletions of vertices needed for a graph G to become a member of \mathscr{C}. More precisely, a graph G has elimination distance 0 to \mathscr{C} if $G \in \mathscr{C}$, and otherwise elimination distance at most $k+1$ if in every connected component of G we can delete a vertex such that the resulting graph has elimination distance at most k to \mathscr{C}. Elimination distance was introduced by Bulian and Dawar [6] in their study of the parameterized complexity of the graph isomorphism problem and has recently obtained much attention in the literature, see e.g. [1, 5, 19, 27, 28, 31].

Now assume \mathscr{C} is a first-order definable class, say defined by a formula $\psi_{\mathscr{C}}$. Then elimination distance 0 to \mathscr{C} is defined by ed ${ }_{0}=\psi_{\mathscr{C}}$. If ed ${ }_{k}$ has been defined, then we can express elimination distance $k+1$ to \mathscr{C} by the formula

$$
\operatorname{ed}_{k+1}:=\operatorname{ed}_{k} \vee \forall x\left(\exists y \operatorname{del}(y)\left[\operatorname{ed}_{k}\right]\right)^{[\operatorname{comp}(x)]}
$$

Our final example concerns the expressive power of separator logic on finite words and finite trees. By the classical result of Büchi [8], a language on words is regular if and only if it is definable in MSO. Here, words are represented as finite structures over the vocabulary of the successor relation and unary predicates representing the letters of the alphabet. When considering first-order logic on strings, it makes a big difference whether one considers word structures over the successor relation or over its transitive closure, the order relation. Languages definable by FO over the order relation are exactly the star-free languages (see e.g. [30, Theorem 7.26]), while languages definable by FO over the successor relation are exactly the locally threshold testable languages [39, Theorem 4.8]. Similarly, MSO on trees can define exactly the regular tree languages (defined via tree automata, see [30, Theorem 7.30]), while FO can only define a proper subclass of the regular tree languages when the ancestor-descendant or even only the parent-child relation is present. This background was also Bojańczyk's motivation, who studied a variant of star-free expressions for graphs and showed that these two formalisms for defining graph languages are equivalent [3]. In our example, we show that separator logic on rooted trees has exactly the same expressive power as first-order logic in the presence of the ancestor-descendant relation. Let us write FO[$<$] for the latter logic. On the other hand, we treat a rooted tree as a graph-theoretic tree with an additional unary predicate marking the root. In the degenerate case, we treat a word as a path, where one of the endpoints is marked by a unary predicate as the smallest vertex (the beginning of the word).

Example 3.7. On rooted trees (and similarly on words) $\mathrm{FO}+$ conn collapses to $\mathrm{FO}+\mathrm{conn}_{1}$ and has exactly the same expressive power as $\mathrm{FO}[<]$ over trees with the ancestor-descendant relation. We show first that $\operatorname{conn}_{k}\left(x, y, z_{1}, \ldots, z_{k}\right)$ can be expressed in $\mathrm{FO}[<]$. For this, we need to ensure that x and y are not equal to any z_{i} and that no z_{i} lies on the unique path between x and y in the tree. We can define the vertices on the unique path between x and y by first defining the least common ancestor of x and y by the formula $\operatorname{lca}(x, y, z)=z \leq x \wedge z \leq y \wedge \neg \exists z^{\prime}\left(z<z^{\prime} \wedge z^{\prime} \leq x \wedge z^{\prime} \leq y\right)$. If z is the least common ancestor of x and y, it remains to state that none of the z_{i} lies either between x and z or between y and z, which is done by the formula $\exists z\left(\operatorname{lca}(x, y, z) \wedge \bigwedge_{1 \leq i \leq k} \neg\left(z \leq z_{i} \leq x \vee z \leq z_{i} \leq y\right)\right)$.

Conversely, we show that we can define with $\mathrm{FO}+\operatorname{conn}_{1}$ the ancestor-descendant relation in rooted trees. Assume the root is marked by the unary symbol R. Then $x<y$ is equivalent to
$\exists r\left(R(r) \wedge \operatorname{conn}_{1}(x, r, y) \wedge \neg \operatorname{conn}_{1}(y, r, x)\right)$.

3.2 The limits of separator logic

We now study the limits of separator logic and show that planarity cannot be expressed in FO + conn. Slightly abusing notation, let us also write $\mathrm{FO}+\operatorname{conn}_{k}$ for the problems that are expressible in $\mathrm{FO}+\mathrm{conn}_{k}$. We also show that there is a strict hierarchy of expressiveness: $\mathrm{FO}+\mathrm{conn}_{0} \subsetneq \mathrm{FO}+\mathrm{conn}_{1} \subsetneq \mathrm{FO}+\mathrm{conn}_{2} \subsetneq \ldots$ These results are based on an adaptation of the standard Ehrenfeucht-Fraïssé game (EF game), which is commonly used in the study of the expressive power of first-order logic.

Ehrenfeucht-Fraïssé Games. The Ehrenfeucht-Fraïssé game is played by two players called Spoiler and Duplicator. Given two structures \mathfrak{A} and \mathfrak{B}, Spoiler's aim is to show that the structures can be distinguished by first-order logic (with formulas of a given quantifier rank), while Duplicator wants to prove the opposite. The q-round EF game proceeds in q rounds, where each round consists of the following two steps.
(1) Spoiler picks an element $a \in \mathfrak{A}$ or an element $b \in \mathfrak{B}$.
(2) Duplicator responds by picking an element of the other structure, that is, she picks a $b \in \mathfrak{B}$ if Spoiler chose $a \in \mathfrak{A}$, and she picks an $a \in \mathfrak{A}$ if Spoiler chose $b \in \mathfrak{B}$.

After q rounds, the game stops. Assume the players have chosen $\bar{a}=a_{1}, \ldots, a_{q}$ and $\bar{b}=b_{1}, \ldots, b_{q}$. Then Duplicator wins if the mapping $a_{i} \mapsto b_{i}$ for all $1 \leq i \leq q$ is a partial isomorphism of \mathfrak{A} and \mathfrak{B}. We write for short
$\bar{a} \mapsto \bar{b}$ for this mapping. Otherwise, Spoiler wins. We say that Duplicator wins the q-round EF game on \mathfrak{A} and \mathfrak{B} if she can force a win no matter how Spoiler plays. We then write $\mathfrak{A} \simeq_{q} \mathfrak{B}$.

Theorem 3.8 (Ehrenfeucht-Fraïssé, see e.g. [30, Theorem 3.18]). Let \mathfrak{A} and \mathfrak{B} be two σ-structures where σ is purely relational. Then $\mathfrak{A} \equiv_{q} \mathfrak{B}$ if and only if $\mathfrak{A} \simeq_{q} \mathfrak{B}$.

As $(\mathrm{FO}+\mathrm{conn})_{\sigma}$ is defined as $\mathrm{FO}_{\sigma+c o n n}$, the EF game for FO naturally extends to separator logic. The $\left(\mathrm{conn}_{k, q}\right)-$ game is played just as the q-round EF game, where the winning condition is adapted as follows. If in q rounds the players have chosen $\bar{a}=a_{1}, \ldots, a_{q}$ and $\bar{b}=b_{1}, \ldots, b_{q}$, then Duplicator wins if
(1) the mapping $\bar{a} \mapsto \bar{b}$ is a partial isomorphism of \mathfrak{A} and \mathfrak{B}, and
(2) for every $\ell \leq k$ and every sequence $\left(i_{1}, \ldots, i_{\ell+2}\right)$ of numbers in $\{1, \ldots, q\}$ we have

$$
\mathfrak{A} \vDash \operatorname{conn}_{\ell}\left(a_{i_{1}}, \ldots, a_{i_{\ell+2}}\right) \quad \Longleftrightarrow \quad \mathfrak{B} \vDash \operatorname{conn}_{\ell}\left(b_{i_{1}}, \ldots, b_{i_{\ell+2}}\right) .
$$

Otherwise, Spoiler wins. We say that Duplicator wins the $\left(\operatorname{conn}_{k, q}\right)$-game on \mathfrak{A} and \mathfrak{B} if she can force a win no matter how Spoiler plays. We then write $\mathfrak{A} \simeq_{\text {conn }_{k, q}} \mathfrak{B}$.

We obtain the following theorem.
Theorem 3.9. Let \mathfrak{A} and \mathfrak{B} be two σ-structures where σ is purely rational (and contains a binary relation symbol E that is interpreted on both structures as an irreflexive and symmetric relation). Then $\mathfrak{A} \equiv_{\operatorname{conn}_{k, q}} \mathfrak{B}$ if and only if $\mathfrak{A} \simeq_{\operatorname{conn}_{k, q}} \mathfrak{B}$.

The next theorem exemplifies the use of the $\left(\operatorname{conn}_{k, q}\right)$-game.
Theorem 3.10. Planarity is not expressible in $\mathrm{FO}+\mathrm{conn}$.

Fig. 1. Planarity is not expressible in $\mathrm{FO}+$ conn.

Proof. Assume planarity is expressible by a sentence φ of $\mathrm{FO}+\operatorname{conn}_{k}$ of quantifier rank q. Without loss of generality, we may assume that $k \leq q$, as otherwise, we have repetitions in the conn ${ }_{k}$ predicates that can be avoided by using conn ${ }_{\ell}$ predicates for $\ell<k$. Let G_{q} and H_{q} be defined as shown in Figure 1, where $n=2^{q+1}$. Then, G_{q} is planar but H_{q} contains $K_{3,3}$ as a minor and hence is not planar (it embeds only in a surface of genus one; the Möbius strip, which cannot be embedded into the plane). We show that $G_{q} \simeq_{\text {conn }_{k, q}} H_{q}$, contradicting the assumption that φ must distinguish G_{q} and H_{q}. In fact, we prove an even stronger statement by giving Spoiler four free moves $g_{-3}=v_{1,1}, g_{-2}=v_{2,1}, g_{-1}=v_{1, n}$ and $g_{0}=v_{2, n}$ in G_{q} where Duplicator responds with the vertices $h_{-3}=v_{1,1}^{\prime}, h_{-2}=v_{2,1}^{\prime}, h_{-1}=v_{2, n}^{\prime}$ and $h_{0}=v_{1, n}^{\prime}$ in H_{q}. Note the twist in the last two vertices. Even though Duplicator's answers are forced, she will be able to win the game and these extra moves will be helpful to define Duplicator's winning strategy.

We define the x-distance of two nodes $v_{i, j}$ and $v_{k, \ell}$ as $\operatorname{dist}_{x}\left(v_{i, j}, v_{k, \ell}\right)=|i-k|$, that is, the x-distance is 0 if the vertices are in the same column and 1 if they are not, and the y-distance as $\operatorname{dist}_{y}\left(v_{i, j}, v_{k, \ell}\right)=|j-\ell|$, that is, the y-distance is the number of rows between the vertices (minus 1). Note that the y-distance is not the distance in the graphs, e.g. $\operatorname{dist}_{y}\left(g_{-3}, g_{-1}\right)=2^{q+1}-1$, even though g_{-3} and g_{-1} are adjacent in G_{q}.

Assume now that the first i moves have been made in the game and the players have selected the vertices $\bar{g}=$ $\left(g_{-3}, \ldots, g_{0}, g_{1}, \ldots, g_{i}\right)$ in G_{q} (where g_{1}, \ldots, g_{i} were freely chosen by the players), and $\bar{h}=\left(h_{-3}, \ldots, h_{0}, h_{1}, \ldots, h_{i}\right)$ in H_{q} (where h_{1}, \ldots, h_{i} were freely chosen by the players). We prove by induction that Duplicator can play in such a way that after round i of the $\left(\operatorname{conn}_{k, q}\right)$-game the following conditions hold for all $-3 \leq j, \ell \leq i$:
(1) if $g_{j}=v_{x, y}$, then $h_{j}=v_{x^{\prime}, y}^{\prime}$ - that is, corresponding pebbles are in the same row, and in particular $\operatorname{dist}_{y}\left(g_{j}, g_{\ell}\right)=\operatorname{dist}_{y}\left(h_{j}, h_{\ell}\right)$, and
(2) if $\operatorname{dist}_{y}\left(g_{j}, g_{\ell}\right) \leq 2^{q-i}$, then $\operatorname{dist}_{x}\left(g_{j}, g_{\ell}\right)=\operatorname{dist}_{x}\left(h_{j}, h_{\ell}\right)$.

Before showing how Duplicator can maintain this invariant, we show that these conditions together with the first four extra moves imply that the mapping $\bar{g} \mapsto \bar{h}$ is a partial isomorphism of G_{q} and H_{q}. The proof is similar to the standard proof that distances larger than 2^{q} in graphs cannot be expressed by first-order formulas with q quantifiers. Intuitively, the twist (the difference in indices between g_{-1}, g_{0} and h_{-1}, h_{0}) cannot be detected in a local neighborhood.

Let us show that also for every $0 \leq \ell \leq k$ and every sequence $\left(i_{1}, \ldots, i_{\ell+2}\right)$ of numbers in $\{-3, \ldots, i\}$ we have $G_{q} \vDash \operatorname{conn}_{\ell}\left(g_{i_{1}}, \ldots, g_{i_{++2}}\right)$ if and only if $H_{q} \vDash \operatorname{conn}_{\ell}\left(h_{i_{1}}, \ldots, h_{i_{\ell+2}}\right)$. Assume $G_{q} \vDash \operatorname{conn}_{\ell}\left(g_{i_{1}}, \ldots, g_{i_{\ell+2}}\right)$, that is, $g_{i_{1}}$ and $g_{i_{2}}$ are connected after the deletion of $g_{i_{3}}, \ldots, g_{i_{\ell+2}}$, say by a path $P=v_{x_{1}, y_{1}} \ldots v_{x_{m}, y_{m}}$, where $v_{x_{1}, y_{1}}=g_{i_{1}}$ and $v_{x_{m}, y_{m}}=g_{i_{2}}$. Then there are no $g_{i_{j_{1}}}=v_{x, y}$ and $g_{i_{j_{2}}}=v_{x^{\prime}, y^{\prime}}$ (for $j_{1}, j_{2} \geq 3$) with $y=y^{\prime}=y_{i}$ and $x \neq x^{\prime}$ for some $2 \leq i \leq m-1$ (this would block a row along which the path goes, which is not possible) and no $g_{i_{j_{1}}}=v_{x, y}$ and $g_{j_{2}}=v_{x^{\prime}, y^{\prime}}\left(\right.$ for $j_{1}, j_{2} \geq 3$) with $y_{i}=y=y^{\prime}-1=y_{i+1}-1$ and $x \neq x^{\prime}$ for some $2 \leq i \leq m-1$ (this would block a "diagonal" of which the path contains at least one vertex, which is not possible). By the first condition of the invariant there are no $h_{i_{j_{1}}}=v_{x, y}$ and $h_{j_{j_{2}}}=v_{x^{\prime}, y^{\prime}}$ (for $j_{1}, j_{2} \geq 3$) with $y=y^{\prime}=y_{i}$ and $x \neq x^{\prime}$ for some $2 \leq i \leq m-1$ and by the second condition of the invariant there are no $h_{i_{j_{1}}}=v_{x, y}$ and $h_{i_{j_{2}}}=v_{x^{\prime}, y^{\prime}}\left(\right.$ for $j_{1}, j_{2} \geq 3$) with $y_{i}=y=y^{\prime}-1=y_{i+1}-1$ and $x \neq x^{\prime}$ for some $2 \leq i \leq m-1$. Now, if $P^{\prime}=v_{x_{1}, y_{1}}^{\prime} \ldots v_{x_{m}, y_{m}}^{\prime}$ is not a path from $h_{i_{1}}$ to $h_{i_{2}}$ after the deletion of $h_{i_{3}}, \ldots, h_{i_{\ell+2}}$, it is possible to reroute the path by switching the row appropriately, as the $h_{i_{j}}$ never block a complete row or a diagonal, as shown above. The case $H_{q} \vDash \operatorname{conn}_{\ell}\left(h_{i_{1}}, \ldots, h_{i_{\ell+2}}\right)$ is symmetrical.

We now show that Duplicator can maintain the invariants (1) and (2) throughout the game. For the initial configuration $i=0$, the conditions are obviously fulfilled for $-3 \leq j, \ell \leq 0$. Corresponding pebbles are in the same row and note that $\operatorname{dist}_{y}\left(g_{j}, g_{\ell}\right)=2^{q+1}-1$, for $j \in\{-3,-2\}$ and $\ell \in\{-1,0\}$ and analogously for h_{j} and h_{ℓ}.
For the induction step, suppose that the conditions are fulfilled so far and that Spoiler is making his $(i+1)$-move in G_{q} (the case of H_{q} is symmetrical). We may assume that Spoiler does not choose a vertex that was chosen before, say Spoiler picks $g_{i+1}=v_{_} a$. In order to fulfill the conditions on the partial isomorphism, Duplicator must
choose $h_{i+1}=v_{a}^{\prime}$, with the same y-coordinate. We have to make sure that she can choose the vertex with that y-coordinate satisfying the second condition. Let $g_{j}=v_{_} b$ and $g_{\ell}=v_{_} c$ with $-3 \leq j, \ell \leq i$ be such that $b \leq a \leq c$ and there is no other $g_{k}=v_{_} d$ with $b<d<c$. Intuitively, g_{j} is a lowest pebble that was placed above (or in the same row as) g_{i+1}, while g_{k} is a highest pebble that was placed below (or in the same row as) g_{i+1}.

There are two cases:
(1) $\operatorname{dist}_{y}\left(g_{j}, g_{\ell}\right) \leq 2^{q-i}$: Then by hypothesis, $\operatorname{dist}_{x}\left(h_{j}, h_{\ell}\right)=\operatorname{dist}_{x}\left(g_{j}, g_{\ell}\right)$ and $\operatorname{dist}_{y}\left(h_{j}, h_{\ell}\right)=\operatorname{dist}_{y}\left(g_{j}, g_{\ell}\right)$. Here, Duplicator chooses the unique $h_{i+1}=v_{-}^{\prime}, a \operatorname{such}$ that $\operatorname{dist}_{x}\left(h_{j}, h_{i+1}\right)=\operatorname{dist}_{x}\left(g_{j}, g_{i+1}\right)$, and we have $\operatorname{dist}_{x}\left(h_{\ell}, h_{i+1}\right)=\operatorname{dist}_{x}\left(g_{\ell}, g_{i+1}\right)$.
(2) $\operatorname{dist}_{y}\left(g_{j}, g_{\ell}\right)>2^{q-i}$: Then $\operatorname{dist}_{y}\left(h_{j}, h_{\ell}\right)>2^{q-i}$ and there are three possibilities:

- $\operatorname{dist}_{y}\left(g_{j}, g_{i+1}\right) \leq 2^{q-(i+1)}$: Then $\operatorname{dist}_{y}\left(g_{\ell}, g_{i+1}\right)>2^{q-(i+1)}$, and Duplicator chooses $h_{i+1}=v_{-a}^{\prime}$ such that $\operatorname{dist}_{x}\left(h_{j}, h_{i+1}\right)=\operatorname{dist}_{x}\left(g_{j}, g_{i+1}\right)$. Hence, $\operatorname{dist}_{y}\left(h_{\ell}, h_{i+1}\right)>2^{q-(i+1)}$.
- $\operatorname{dist}_{y}\left(g_{\ell}, g_{i+1}\right) \leq 2^{q-(i+1)}$: Then $\operatorname{dist}_{y}\left(g_{j}, g_{i+1}\right)>2^{q-(i+1)}$. Similarly to the previous case, Duplicator chooses $h_{i+1}=v_{, a}^{\prime}$ such that $\operatorname{dist}_{x}\left(h_{\ell}, h_{i+1}\right)=\operatorname{dist}_{x}\left(g_{\ell}, g_{i+1}\right)$. Consequently, $\operatorname{dist}_{y}\left(h_{j}, h_{i+1}\right)>2^{q-(i+1)}$.
- $\operatorname{dist}_{y}\left(g_{j}, g_{i+1}\right)>2^{q-(i+1)}$ and $\operatorname{dist}_{y}\left(g_{\ell}, g_{i+1}\right)>2^{q-(i+1)}$: Here, Duplicator can choose $h_{i+1}=v_{1, a}^{\prime}$ or $h_{i+1}=v_{2, a}^{\prime}$ as she wants. We get that dist $y_{y}\left(h_{j}, h_{i+1}\right) \geq 2^{q-(i+1)}$ and $\operatorname{dist}_{y}\left(h_{\ell}, h_{i+1}\right) \geq 2^{q-(i+1)}$.
Thus, in all cases, the conditions are fulfilled, and Duplicator wins the ($\operatorname{conn}_{k, q}$)-game on G_{q} and H_{q}. Hence, planarity is not definable in $\mathrm{FO}+$ conn.

As a graph is planar if and only if it excludes K_{5} and $K_{3,3}$ as (topological) minors, we conclude that $\mathrm{FO}+$ conn cannot express containment of minors or topological minors. This motivates the definition of the stronger logic $\mathrm{FO}+\mathrm{DP}$ in the next section, which can express the existence of disjoint paths. We will show that FO +DP can be used to express minor and topological minor containment in the next section. The disjoint paths problem gets as input a graph G and vertices $s_{1}, t_{1}, \ldots, s_{k}, t_{k} \in V(G)$. The question is whether there are pairwise vertex disjoint paths between s_{i} and t_{i} for $1 \leq i \leq k$.

Corollary 3.11. The disjoint paths problem cannot be expressed in $\mathrm{FO}+$ conn.
The proof of the next theorem is deferred to the next section, as it is a consequence of the fact that the even stronger logic FO + DP cannot express bipartiteness (Theorem 4.8).

Theorem 3.12. Bipartiteness cannot be expressed in $\mathrm{FO}+\mathrm{conn}$.
Finally, we show that the $\mathrm{FO}+\operatorname{conn}_{k}$ hierarchy is strict by proving that $(k+2)$-connectivity cannot be expressed by $\mathrm{FO}+\operatorname{conn}_{k}$. On the other hand, $(k+2)$-connectivity can be expressed by $\mathrm{FO}+\mathrm{conn}_{k+1}$ (Example 3.2).

Theorem 3.13. $(k+2)$-connectivity cannot be expressed by $\mathrm{FO}+\operatorname{conn}_{k}$. In particular, the $\mathrm{FO}+\operatorname{conn}_{k}$ hierarchy is strict, that is, $\mathrm{FO}+\mathrm{conn}_{0} \subsetneq \mathrm{FO}+\mathrm{conn}_{1} \subsetneq \ldots$

Proof. Let k be an integer. For every integer q, we choose two graphs G_{q} and H_{q} such that:

- G_{q} is connected,
- H_{q} is not connected, and
- $G_{q} \simeq_{q} H_{q}$.

This is possible, as connectivity is not first-order definable, and \simeq_{q} has only finitely many equivalence classes (as there are only finitely many $\mathrm{FO}[q]$-sentences over the signature of graphs). For example, we can choose G_{q} as a cycle of length 2^{q+1} and H_{q} as the union of two disjoint cycles of length 2^{q}, see e.g. the example for Theorem 4.12 of [30].

Then, we define the graph G_{q}^{k} (resp. H_{q}^{k}) as the disjoint union of G_{q} (resp. H_{q}) and K_{k+1}, a clique of size $k+1$, and connect the vertices of the clique with all vertices of G_{q} (resp. H_{q}), that is, we add the additional edges such
that $(x, y) \in E\left(G_{q}^{k}\right)$ (resp. $\left.(x, y) \in E\left(H_{q}^{k}\right)\right)$ if $x \in G_{q}$ (resp. $\left.x \in H_{q}\right)$ and $y \in K_{k+1}$. The graph G_{q}^{k} is $(k+2)$-connected (the deletion of any $k+1$ vertices cannot disconnect G_{q}^{k}), while H_{q}^{k} is not $(k+2)$-connected (the deletion of the copy of K_{k+1} disconnects $\left.H_{q}^{k}\right)$. Therefore, every $\operatorname{conn}_{k}\left(x, y, z_{1}, \ldots, z_{k}\right)$ predicate can be expressed by an atomic plain first-order formula: in both graphs (the valuations of) x and y are not connected after the deletion of (the valuations of) z_{1}, \ldots, z_{k} if and only if x or y is equal to one of the z_{i}. Hence, to prove $G_{q}^{k} \simeq_{\operatorname{conn}_{k, q}} H_{q}^{k}$ it suffices to prove $G_{q}^{k} \simeq_{q} H_{q}^{k}$ to finish the proof.

Claim 3.14. For all integers q, k we have $G_{q}^{k} \simeq{ }_{q} H_{q}^{k}$.
Proof. The following is obviously a winning strategy for Duplicator in the q-round EF game on G_{q}^{k} and H_{q}^{k}. If Spoiler plays a pebble in the subgraph G_{q} or H_{q}, Duplicator can respond by a pebble in the subgraph H_{q} or G_{q} according to the winning strategy of Duplicator in the EF game on G_{q} and H_{q}. Otherwise, if Spoiler picks a pebble in the subgraph K_{k+1} of G_{q}^{k} or H_{q}^{k}, Duplicator can respond by a pebble in the subgraph K_{k+1} of the other graph H_{q}^{k} or G_{q}^{k}.

This concludes the proof of Theorem 3.13.

4 DISJOINT-PATHS LOGIC

In this section, we study the expressive power of disjoint-paths logic $\mathrm{FO}+\mathrm{DP}$. We again fix a signature σ that does not contain the symbol disjoint-paths ${ }_{k}$ for any $k \geq 1$ and that does contain a binary (edge) relation symbol E. The disjoint paths predicates will always refer to this relation. We let $\sigma+$ disjoint-paths $:=\sigma \cup\left\{\right.$ disjoint-paths $\left._{k}: k \geq 1\right\}$, where each symbol disjoint-paths ${ }_{k}$ is a $2 k$-ary relation symbol.

Definition 4.1. The formulas of $(\mathrm{FO}+\mathrm{DP})_{\sigma}$ are the formulas of $\mathrm{FO}_{\sigma+\text { disjoint-paths. We usually simply write }}$ $\mathrm{FO}+\mathrm{DP}$, when σ is understood from the context.

For a σ-structure \mathfrak{A}, an assignment \bar{a} and an $\mathrm{FO}+\mathrm{DP}$ formula $\varphi(\bar{x})$, we define the satisfaction relation $(\mathfrak{A}, \bar{a}) \vDash \varphi(\bar{x})$ as for first-order logic, where an atomic predicate disjoint-paths ${ }_{k}\left[\left(x_{1}, y_{1}\right), \ldots\left(x_{k}, y_{k}\right)\right]$ is evaluated as follows. Assume that the universe of \mathfrak{A} is A and let $G=\left(A, E^{\mathfrak{A}}\right)$ be the graph on vertex set A and edge set $E^{\mathfrak{U}}$. Then (\mathfrak{A}, \bar{a}) models disjoint-paths ${ }_{k}\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right]$ if and only if in G there exist k internally vertex-disjoint paths P_{1}, \ldots, P_{k}, where P_{i} connects $\bar{a}\left(x_{i}\right)$ and $\bar{a}\left(y_{i}\right)$.

We write $\mathrm{FO}+\mathrm{DP}_{k}$ for the fragment of $\mathrm{FO}+\mathrm{DP}$ that uses only disjoint-paths ${ }_{\ell}$ predicates for $\ell \leq k$. The quantifier rank of an $\mathrm{FO}+\mathrm{DP}$ formula is defined as for plain first-order logic. For structures \mathfrak{A} with universe A and $\bar{a} \in A^{m}$ and \mathfrak{B} with universe B and $\bar{b} \in B^{m}$, we write $(\mathfrak{A}, \bar{a}) \equiv_{\mathrm{DP}}(\mathfrak{B}, \bar{b})$ if (\mathfrak{A}, \bar{a}) and (\mathfrak{B}, \bar{b}) satisfy the same FO + DP formulas, that is, for all $\varphi(\bar{x}) \in \mathrm{FO}+\mathrm{DP}$ we have $\mathfrak{A} \vDash \varphi(\bar{a}) \Leftrightarrow \mathfrak{B} \vDash \varphi(\bar{b})$. Similarly, we write $(\mathfrak{A}, \bar{a}) \equiv_{\mathrm{DP}_{k}}(\mathfrak{B}, \bar{b})$ and $(\mathfrak{H}, \bar{a}) \equiv{ }_{\mathrm{DP}_{k, q}}(\mathfrak{B}, \bar{b})$ if (\mathfrak{H}, \bar{a}) and (\mathfrak{B}, \bar{b}) satisfy the same $\mathrm{FO}+\mathrm{DP}_{k}$ formulas and the same $\mathrm{FO}+\mathrm{DP}_{k}$ formulas of quantifier rank at most q, respectively.

4.1 Expressive power of disjoint-paths logic

We now study the expressive power of disjoint-paths logic.
Observation 4.2. $\mathrm{FO}+\mathrm{conn} \subseteq \mathrm{FO}+\mathrm{DP}$ because $\operatorname{conn}_{k}\left(x, y, z_{1}, \ldots, z_{k}\right)$ is equivalent to

$$
\text { disjoint-paths }_{k+1}\left[(x, y),\left(z_{1}, z_{1}\right), \ldots,\left(z_{k}, z_{k}\right)\right] \wedge \bigwedge_{i \leq k}\left(z_{i} \neq x \wedge z_{i} \neq y\right)
$$

Moreover, the inclusion is strict because planarity (Theorem 3.10) and hence, the disjoint paths problem (Corollary 3.11) is not expressible in FO + conn, while planarity and in fact the problem that a graph contains a fixed (topological) minor can be expressed in $\mathrm{FO}+\mathrm{DP}$.

Example 4.3. For every fixed graph H, there is an $\mathrm{FO}+\mathrm{DP}$ formula $\varphi_{H}^{\text {top }}$ such that $G \vDash \varphi_{H}^{\text {top }}$ if and only if $H \leqslant^{t o p} G$.

Let n, m, ℓ respectively be the number of vertices, edges, and isolated vertices in H. Let $x_{1}, \ldots x_{n}$ be n variables. Let e_{1}, \ldots, e_{m} be the list of edges of H, and let $v_{j_{s}}$ and $v_{j_{t}}$ be the two endpoints of e_{j}. Finally, let $v_{i_{1}}, \ldots, v_{i_{\ell}}$ be the isolated vertices of H. Then,

$$
\varphi_{H}^{t o p}:=\exists x_{1}, \ldots x_{n}\left(\bigwedge_{i \neq j} x_{i} \neq x_{j} \wedge \operatorname{disjoint}^{\text {paths }}{ }_{m+\ell}\left[\left(x_{e_{1_{s}}}, x_{e_{1_{t}}}\right), \ldots\left(x_{e_{m_{s}}}, x_{e_{m_{t}}}\right),\left(x_{i_{1}}, x_{i_{1}}\right), \ldots\left(x_{i_{\ell}}, x_{i_{\ell}}\right)\right]\right) .
$$

Example 4.4. For every fixed graph H, there is an $\mathrm{FO}+\mathrm{DP}$ formula φ_{H} such that $G \vDash \varphi_{H}$ if and only if $H \leqslant G$. This is because, for every graph H, there exists a finite family of graphs H_{1}, \ldots, H_{ℓ} such that $H \leqslant G$ if and only if there is an $i \leq \ell$ such that $H_{i} \leqslant^{t o p} G$. This family can be obtained by considering all possibilities of replacing every branch set representing a vertex of H of degree $d \geq 3$ with a tree with at most d leaves and hardcoding their shapes by disjoint paths.

Example 4.5. Planarity can be expressed in $\mathrm{FO}+\mathrm{DP}$. This is a corollary of the previous example, using the formula $\varphi_{\text {planar }}:=\neg \varphi_{K_{5}} \wedge \neg \varphi_{K_{3,3}}$.

Example 4.6. A graph has treewidth 1 if it is a tree or a forest, hence an acyclic graph. We can express acyclicity in $\mathrm{FO}+$ conn (see Example 3.3).

A graph has treewidth 2 if every biconnected component is series-parallel. Series-parallel graphs exclude K_{4} as a minor: $\varphi_{t w 2}:=\neg \varphi_{K_{4}}$. In general, we can express treewidth at most $k, k \in \mathbb{N}$, because it can be defined by a finite set of forbidden minors [34].

4.2 The limits of disjoint-paths logic

We now study the limits of disjoint-paths logic and show that bipartiteness cannot be expressed in $\mathrm{FO}+\mathrm{DP}$. We also show that the hierarchy on $\left(\mathrm{FO}+\mathrm{DP}_{k}\right)_{k \geq 1}$ is strict. These results are based again on an adaptation of the standard Ehrenfeucht-Fraïssé game.

The $\left(\mathrm{DP}_{k, q}\right)$-game is played just as the q-round EF game, but the winning condition is adapted as follows. If in q rounds the players have chosen $\bar{a}=a_{1}, \ldots, a_{q}$ and $\bar{b}=b_{1}, \ldots, b_{q}$, then Duplicator wins if
(1) the mapping $\bar{a} \mapsto \bar{b}$ is a partial isomorphism of \mathfrak{A} and \mathfrak{B}, and
(2) for every $\ell \leq k$ and every sequence $\left(i_{1}, \ldots, i_{2 \ell}\right)$ of numbers in $\{1, \ldots, q\}$ we have

$$
\mathfrak{H} \vDash \operatorname{disjoint}^{\text {paths }}{ }_{\ell}\left[\left(a_{i_{1}}, a_{i_{2}}\right), \ldots,\left(a_{i_{2 \ell-}}, a_{i_{2 \ell}}\right)\right] \quad \Longleftrightarrow \quad \mathfrak{B} \mid=\operatorname{disjoint-paths}_{\ell}\left[\left(b_{i_{1}}, b_{i_{2}}\right), \ldots,\left(b_{i_{2 \ell-1}}, b_{i_{2 \ell}}\right)\right] .
$$

Otherwise, Spoiler wins. We say that Duplicator wins the $\left(\mathrm{DP}_{k, q}\right)$-game on \mathfrak{A} and \mathfrak{B} if she can force a win no matter how Spoiler plays. We then write $\mathfrak{A} \simeq_{\mathrm{DP}_{k, q}} \mathfrak{B}$.

As $(\mathrm{FO}+\mathrm{DP})_{\sigma}$ is defined as $\mathrm{FO}_{\sigma+\text { disjoint-paths }}$ we obtain the following theorem.
Theorem 4.7. Let \mathfrak{A} and \mathfrak{B} be two σ-structures where σ is purely rational (and contains a binary relation symbol E that is interpreted on both structures as an irreflexive and symmetric relation). Then $\mathfrak{A} \equiv_{\mathrm{DP}_{k, q}} \mathfrak{B}$ if and only if $\mathfrak{A} \simeq_{\mathrm{DP}_{k, q}} \mathfrak{B}$.

Theorem 4.8. Bipartiteness is not definable in $\mathrm{FO}+\mathrm{DP}$.
Proof. Let q be an integer, and let G be a cycle graph with 2^{q} vertices and H a cycle graph with $2^{q}+1$ vertices. Then, G is bipartite because it has an even number of vertices, and H is not bipartite because it has an odd number of vertices. We want to show that $G \simeq_{\mathrm{DP}_{k, q}} H$ by induction over q.

We define the distance $\operatorname{dist}(x, y)$ of two vertices x and y as the length of the shortest path between x and y.

Let $\bar{g}=\left(g_{1}, \ldots, g_{i}\right)$ be the first i moves in G and similarly $\bar{h}=\left(h_{1}, \ldots, h_{i}\right)$ the first i moves in H. We can prove by induction that Duplicator can play in such a way that after round i of the $\left(\mathrm{DP}_{k, q}\right)$-game the following conditions hold for all $j, \ell \leq i$:
(1) If $\operatorname{dist}\left(g_{j}, g_{\ell}\right)<2^{q-i+1}$, then $\operatorname{dist}\left(g_{j}, g_{\ell}\right)=\operatorname{dist}\left(h_{i}, h_{\ell}\right)$.
(2) If dist $\left(g_{j}, g_{\ell}\right) \geq 2^{q-i+1}$, then $\operatorname{dist}\left(h_{j}, h_{\ell}\right) \geq 2^{q-i+1}$.
(3) The selected vertices in G and H have the same "circular order".

By the first two conditions, the partial isomorphism $\bar{g} \mapsto \bar{h}$ can be ensured. Furthermore, the third condition implies that the second condition for Duplicator's win is also satisfied.
The base case $i=1$ of the induction is trivial because $\operatorname{dist}\left(g_{1}, g_{1}\right)=\operatorname{dist}\left(h_{1}, h_{1}\right)=0$.
For the induction step, suppose that $G \simeq{ }_{\mathrm{DP}_{k, i}} H$ holds and Spoiler is making his ($i+1$)-st move in G . The case of H is equivalent.
If Spoiler picks g_{j} for some $j \leq i$, a vertex that has already been chosen before, Duplicator can choose h_{j}, and the conditions are fulfilled by the induction hypothesis. Otherwise, Spoiler picks a vertex g_{i+1} that has not been chosen before. Now we have to differentiate two cases:
(1) There is only one other vertex that has already been played, $g_{j}=g_{1}, j \leq i$. Then, we can find h_{i+1} such that $\operatorname{dist}\left(h_{1}, h_{i+1}\right)=\operatorname{dist}\left(g_{1}, g_{i+1}\right)$.
(2) g_{i+1} lies on the shortest path between g_{j} and g_{ℓ} with $j, \ell \leq i$ such that there is no other $g_{n}, n \leq i$ that lies on this path. Then, there are two possibilities:

- $\operatorname{dist}\left(g_{j}, g_{\ell}\right)<2^{q-i+1}:$ Then $\operatorname{dist}\left(h_{j}, h_{\ell}\right)<2^{q-i+1}$ and we can find h_{i+1} on the shortest path between h_{j} and h_{ℓ} such that $\operatorname{dist}\left(h_{j}, h_{i+1}\right)=\operatorname{dist}\left(g_{j}, g_{i+1}\right)$ and $\operatorname{dist}\left(h_{i+1}, h_{\ell}\right)=\operatorname{dist}\left(g_{i+1}, g_{\ell}\right)$.
- $\operatorname{dist}\left(g_{j}, g_{\ell}\right) \geq 2^{q-i+1}$: Then $\operatorname{dist}\left(h_{j}, h_{\ell}\right) \geq 2^{q-i+1}$ and there are three cases:
(a) $\operatorname{dist}\left(g_{j}, g_{i+1}\right)<2^{q-i}$: Then $\operatorname{dist}\left(g_{i+1}, g_{\ell}\right) \geq 2^{q-i}$ and we can choose h_{i+1} on the shortest path between h_{j} and h_{ℓ} such that $\operatorname{dist}\left(h_{j}, h_{i+1}\right)=\operatorname{dist}\left(g_{j}, g_{i+1}\right)$ and $\operatorname{dist}\left(h_{i+1}, h_{\ell}\right) \geq 2^{q-i}$.
(b) dist $\left(g_{i+1}, g_{\ell}\right)<2^{q-i}$: This case is similar to the previous one.
(c) $\operatorname{dist}\left(g_{j}, g_{i+1}\right) \geq 2^{q-i}$ and $\operatorname{dist}\left(g_{i+1}, g_{\ell}\right) \geq 2^{q-i}: \operatorname{Since} \operatorname{dist}\left(h_{j}, h_{\ell}\right) \geq 2^{q-i+1}$, we can find h_{i+1} with $\operatorname{dist}\left(h_{j}, h_{i+1}\right) \geq 2^{q-i}$ and $\operatorname{dist}\left(h_{i+1}, h_{f}\right) \geq 2^{q-i}$ in the middle of the shortest path between h_{j} and h_{ℓ}.
Thus, in all cases, the conditions are fulfilled. This completes the inductive proof.
We now show that the hierarchy on $\left(\mathrm{FO}+\mathrm{DP}_{k}\right)_{k \geq 1}$ is strict.
Lemma 4.9. For all integers $k \geq 1,(2 k)$-connectivity is not expressible in $\mathrm{FO}+\mathrm{DP}_{k}$.
Proof. Let k be an integer. For every integer q, we define two graphs G_{q} and H_{q} such that:
- G_{q} is 2-connected,
- H_{q} is 1-connected but not 2-connected, and
- $G_{q} \simeq_{q} H_{q}$

For example, take G_{q} the cycle with 2^{q+1} many elements, together with an apex vertex, while H_{q} is the disjoint union of two cycles with 2^{q} many elements each, together with an apex vertex (see Figure 2).
Obviously, G_{q} is 2-connected and H_{q} is 1-connected but not 2-connected. To show that G_{q} and H_{q} are FO[q]equivalent, we can play the EF-game in the same way as for connectivity on a cycle and a disjoint union of two cycles with the only difference that Duplicator chooses the apex vertex of the other graph whenever Spoiler chooses the apex vertex of one graph in his move.
We then define G_{q}^{k} (resp. H_{q}^{k}) as the lexicographical product of G_{q} (resp. H_{q}) with $K_{2 k}$, the clique with $2 k$ elements. More precisely, if $G_{q}=(V, E)$, where $V=\{1, \ldots, n\}$, then $G_{q}^{k}:=\left(V^{\prime}, E^{\prime}\right)$ where:

- $V^{\prime}:=\left\{v_{1,1}, \ldots, v_{1,2 k}, \ldots, v_{n, 1}, \ldots, v_{n, 2 k}\right\}$

Fig. 2. The FO + DP hierarchy is strict

- $E^{\prime}:=\left\{\left\{v_{i, j}, v_{i^{\prime}, j^{\prime}}\right\}: i=i^{\prime} \vee\left(i, i^{\prime}\right) \in E\right\}$.

One can view G_{q}^{k} as $2 k$ copies of G_{q} on top of each other. Vertices are replaced by $2 k$-cliques, and edges are replaced by $(2 k, 2 k)$-bicliques. A direct consequence of the definition is the following equivalence.

Claim 4.10. For all integers q, k, we have that $G_{q}^{k} \simeq_{q} H_{q}^{k}$.
Proof. Duplicator's strategy follows the one derived from $G_{q} \simeq_{q} H_{q}$. If Spoiler picks a vertex $v_{i, j} \in G_{q}^{k}$, then Duplicator can respond by choosing the vertex $v_{i^{\prime}, j} \in H_{q}^{k}$ where $v_{i^{\prime}} \in H_{q}$ is Duplicator's response to $v_{i} \in G_{q} \quad \square$

We then show that over G_{q}^{k} and H_{q}^{k}, the predicate disjoint-paths ${ }_{k}$ [] is always true and therefore that, for these structures, $\left(\mathrm{FO}+\mathrm{DP}_{k}\right)[q]$ collapses to $\mathrm{FO}[q]$.

Claim 4.11. For all integers q, k, for every k-tuples \bar{a}, \bar{b}, we have that G_{q}^{k} and H_{q}^{k} both satisfy the query disjoint-paths ${ }_{k}\left[\left(a_{1}, b_{1}\right), \ldots,\left(a_{k}, b_{k}\right)\right]$.

Proof. The proofs for G_{q}^{k} and H_{q}^{k} are identical, so we only do it for G_{q}^{k}. Remember that n is the number of vertices in G_{q}. The idea is that each of the k paths uses at most two "copies" of each vertex of G_{q}, hence $2 k$ "copies" is enough for all paths to exist. For every $i \leq n$, let $B_{i}:=\left\{v_{i, j}: j \leq 2 k\right\}$, and $F_{i}:=\left\{v_{i, j}: j \leq 2 k \wedge v_{i, j} \notin \bar{a} \wedge v_{i, j} \notin \bar{b}\right\}$. We call B_{i} the set of vertices in position i, and F_{i} the free vertices in position i. We then compute each path, starting with $\left(a_{1}, b_{1}\right)$.

Let $i, j, i^{\prime}, j^{\prime}$ such that $a_{1}=v_{i, j}$ and $b_{1}=v_{i^{\prime}, j^{\prime}}$. If $i=i^{\prime}$, then there is nothing to do as a_{1} and b_{1} are neighbors. Otherwise, note that for every $i^{\prime \prime} \leq n, F_{i^{\prime \prime}} \neq \emptyset$, because there are only $2 k-2$ elements among $a_{2}, \ldots, a_{k}, b_{2}, \ldots, b_{k}$. Since G_{q} is a connected graph, there is a path from i to i^{\prime}. For every inner node $i^{\prime \prime}$ of this path, we can select a vertex $v \in F_{i^{\prime \prime}}$. We can therefore create a path in G_{q}^{k} from a_{1} to b_{1} where all inner vertices are free vertices. We then remove these vertices from the sets of free vertices.

Let now $1<\ell \leq k$, and let $i, j, i^{\prime}, j^{\prime}$ such that $a_{\ell}=v_{i, j}$ and $b_{\ell}=v_{i^{\prime}, j^{\prime}}$. We assume that the first $\ell-1$ paths have already been computed. Observe that here again, if $i=i^{\prime}$ there is nothing to do. Otherwise, we again have that for every $i^{\prime \prime}, F_{i^{\prime \prime}}$ is not empty. This is because for every $s \leq k$, the path from a_{s} to b_{s} intersects $B_{i^{\prime \prime}}$ at most twice (at most once for the inner vertices, and twice when the two endpoints are both in position $i^{\prime \prime}$). Therefore, we can select a path in G_{q} from i to i^{\prime} and for each $i^{\prime \prime}$ in this path, pick a vertex $v \in F_{i^{\prime \prime}}$.

With Claim 4.11, we can replace formulas of $\left(\mathrm{FO}+\mathrm{DP}_{k}\right)[q]$ by formulas of $\mathrm{FO}[q]$. Thanks to Claim 4.10, $G_{q}^{k} \simeq_{q} H_{q}^{k}$, we conclude that $G_{q}^{k} \simeq_{\mathrm{DP}_{k, q}} H_{q}^{k}$. So $\mathrm{FO}+\mathrm{DP}_{k}$ cannot express $2 k$-connectivity. Note that this bound is

Since $2 k$-connectivity is expressible in $\mathrm{FO}+\operatorname{conn}_{2 k-1}$ (see Example 3.2) but the disjoint paths problem is not expressible in FO + conn (see Corollary 3.11), we can conclude the following corollary.

Corollary 4.12. $\mathrm{FO}+\mathrm{DP}_{k}$ and $\mathrm{FO}+$ conn $_{2 k-1}$ are not comparable for $k \geq 2$.
We believe that $\mathrm{FO}+\mathrm{DP}_{k}$ cannot express $(k+1)$-connectivity and hence, also $\mathrm{FO}+\mathrm{DP}_{k}$ and $\mathrm{FO}+\mathrm{conn}_{k}$ are not comparable for $k \geq 2$.

Conjecture 4.13. $\mathrm{FO}+\mathrm{DP}_{k}$ and $\mathrm{FO}+\operatorname{conn}_{k}$ are not comparable for $k \geq 2$.
Lemma 4.14. The $\mathrm{FO}+\mathrm{DP}_{k}$ hierarchy is strict, that is, $\mathrm{FO}+\mathrm{DP}_{1} \subsetneq \mathrm{FO}+\mathrm{DP}_{2} \subsetneq \ldots$
Proof. Consider the structures in the proof of Lemma 4.9, which are indistinguishable in $\mathrm{FO}+\mathrm{DP}_{k}$. The following sentence of $\mathrm{FO}+\mathrm{DP}_{k+1}$ distinguishes G_{q}^{k} and H_{q}^{k} :

$$
\exists a_{1} \exists b_{1} \ldots \exists a_{k+1} \exists b_{k+1} \neg \text { disjoint-paths }_{k+1}\left[\left(a_{1}, b_{1}\right), \ldots,\left(a_{k+1}, b_{k+1}\right)\right]
$$

In H_{q}^{k}, pick the vertex i such that the induced subgraph $H_{q} \backslash\{i\}$ is not connected. Let $i^{\prime}, i^{\prime \prime} \in V\left(H_{q}\right)$ be two vertices that are not connected in $H_{q} \backslash\{i\}$. Then pick the vertices $a_{j}=v_{i, j}$ for $j \leq k$ and $b_{j}=v_{i, k+j}$ for $j \leq k$, as well as $a_{k+1}=v_{i^{\prime}, 1}$ and $b_{k+1}=v_{i^{\prime \prime}, 1}$.

Intuitively, this means that the path between $a_{k+1}=v_{i^{\prime}, 1}$ and $b_{k+1}=v_{i^{\prime \prime}, 1}$ needs to traverse at least one of the vertices $v_{i, _}$because the vertices $v_{i^{\prime}, _}$and $v_{i^{\prime \prime},-}$ are not connected in $H_{q}^{k} \backslash \bigcup_{j \leq 2 k}\left\{v_{i, j}\right\}$. However, the path between $a_{k+1}=v_{i^{\prime}, 1}$ and $b_{k+1}=v_{i^{\prime \prime}, 1}$ also has to be internally vertex-disjoint to the paths between $a_{j}=v_{i, j}$ and $b_{j}=v_{i, k+j}$ for $j \leq k$ whose endpoints are all vertices $v_{i, \ldots}$. Therefore, there are no $k+1$ disjoint path between the a_{j} 's and b_{j} 's and the FO $+\mathrm{DP}_{k+1}$-sentence $\exists a_{1} \exists b_{1} \ldots \exists a_{k+1} \exists b_{k+1} \neg$ disjoint-paths $_{k+1}\left[\left(a_{1}, b_{1}\right), \ldots,\left(a_{k+1}, b_{k+1}\right)\right]$ is satisfied in H_{q}^{k}.
G_{q}^{k} does not satisfy this $\mathrm{FO}+\mathrm{DP}_{k+1}$-formula because there is no vertex $i \in V\left(G_{q}\right)$ such that the induced subgraph $G_{q} \backslash\{i\}$ is not connected. Instead, we can find $k+1$ disjoint paths for all given pairs of vertices in G_{q}^{k}.

4.3 Equivalent operators

It seems natural to consider other operators that can express the presence or exclusion of a minor or topological minor. Consider the following operators.
(1) $\operatorname{minor}\left(x_{1}, \ldots, x_{k}, H\right)$, expressing that G contains H as a minor with branch sets $H_{1}, \ldots, H_{k} \subseteq G$ such that $x_{i} \in V\left(H_{i}\right)$.
(2) top-minor $\left(x_{1}, \ldots, x_{k}, H\right)$, expressing that G contains H as a topological minor with principal vertices $x_{i} \in V\left(H_{i}\right)$, where H is an ordered graph such that the vertices x_{i} are uniquely associated to the vertices of H.

Observation 4.15. Disjoint-paths logic, minor logic, and topological-minor logic have the same expressive power.

Proof. Disjoint-paths logic can express the presence of a minor or topological minor (Examples 4.3 and 4.4). Both minor and topological-minor logic can express disjoint paths: disjoint-paths ${ }_{k}\left[\left(x_{1}, y_{1}\right), \ldots\left(x_{k}, y_{k}\right)\right]$ is equivalent to $\operatorname{minor}\left(x_{1}, y_{1}, \ldots, x_{k}, y_{k}, M_{k}\right)$, where M_{k} is a graph on vertex set $x_{1}, y_{1}, \ldots, x_{k}, y_{k}$ inducing a matching between the x_{i} and y_{i}.

It will be interesting to study a variation of minor logic where we adapt the minor operator such that $\operatorname{minor}\left(x_{1}, \ldots, x_{k}, H\right)$ expresses that G contains H as a minor after the deletion of x_{1}, \ldots, x_{k} (not specifying the vertices that must be contained in the branch sets).

A second variation is the minor $\left(y, x_{1}, \ldots, x_{k}, H\right)$ operator, expressing that after the deletion of x_{1}, \ldots, x_{k}, G contains H as a minor in the component of y.

5 CONNECTION TO OTHER LOGICS

In this section, we compare the expressive power of separator logic and disjoint-paths logic with monadic second-order logic and transitive-closure logic. Figure 5 depicts the connections between these logics.

5.1 Monadic second-order logic

Monadic second-order logic $\left(\mathrm{MSO}_{1}\right)$ allows quantification over sets of vertices in addition to the first-order quantifiers. It has a higher expressive power than first-order logic because, for example, connectivity is expressible in MSO_{1}. Connectivity is expressible by

$$
\forall R((\exists x R(x) \wedge \exists x \neg R(x)) \rightarrow \exists x \exists y(R(x) \wedge \neg R(y) \wedge E(x, y)))
$$

By an extension of this formula, we can say that a given set S is connected:

$$
\begin{aligned}
& \operatorname{conn}-\operatorname{set}(S):=\forall R((R \subseteq S \wedge \exists x R(x) \wedge \exists x(S(x) \wedge \neg R(x))) \\
&\rightarrow \exists x \exists y(R(x) \wedge \neg R(y) \wedge S(y) \wedge E(x, y)))
\end{aligned}
$$

Furthermore, we can express the connectivity operators in MSO_{1}. The connectivity operator $\operatorname{conn}_{0}(x, y)$ can be expressed by:

$$
\operatorname{conn}_{0}(x, y):=\forall R(R(x) \wedge \forall v \forall w((R(v) \wedge E(v, w)) \rightarrow R(w)) \rightarrow R(y))
$$

and $\operatorname{conn}_{k}\left(x, y, z_{1}, \ldots, z_{k}\right)$ using conn-set (S) by:

$$
\operatorname{conn}_{k}\left(x, y, z_{1}, \ldots, z_{k}\right):=\exists S\left(\operatorname{conn}-\operatorname{set}(S) \wedge S(x) \wedge S(y) \wedge \bigwedge_{i \leq k} \neg S\left(z_{i}\right)\right)
$$

We can express the disjoint paths predicates disjoint-paths ${ }_{k}\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right]$ by:

$$
\begin{aligned}
\exists S_{1} \ldots \exists S_{k} & \left(\bigwedge_{i \leq k}\left(S_{i}\left(x_{i}\right) \wedge S_{i}\left(y_{i}\right) \wedge \text { conn-set }\left(S_{i}\right)\right)\right. \\
& \left.\wedge \bigwedge_{i<j \leq k} \forall z\left(\left(S_{i}(z) \wedge S_{j}(z)\right) \rightarrow\left(\left(z=x_{i} \vee z=y_{i}\right) \wedge\left(z=x_{j} \vee z=y_{j}\right)\right)\right)\right)
\end{aligned}
$$

Since the disjoint paths operators are expressible in $\mathrm{MSO}_{1}, \mathrm{FO}+\mathrm{DP}$ is included in MSO_{1}. This inclusion is strict because it is well-known that bipartiteness is expressible in MSO_{1} :

$$
\exists R_{1} \exists R_{2}\left(\forall x\left(R_{1}(x) \leftrightarrow \neg R_{2}(x)\right) \wedge \bigwedge_{i \leq 2} \forall x \forall y\left(\left(R_{i}(x) \wedge R_{i}(y)\right) \rightarrow \neg E(x, y)\right)\right)
$$

but we showed in Theorem 4.8 that bipartiteness is not expressible in $\mathrm{FO}+\mathrm{DP}$.

5.2 Transitive-closure logic

Transitive-closure logic TC_{j}^{i} is the enrichment of first-order logic with the transitive-closure operator $\left[\mathrm{TC}_{\bar{x}, \bar{y}} \varphi(\bar{x}, \bar{y})\right]$ where \bar{x} and \bar{y} are tuples of length i and φ is a formula with at most j free variables other than \bar{x} and \bar{y}. The transitiveclosure formula $\left[\mathrm{TC}_{\bar{x}, \bar{y}} \varphi(\bar{x}, \bar{y})\right](\bar{u}, \bar{v})$ is true in a graph G if there exists tuples of vertices $\bar{z}_{0}, \ldots, \bar{z}_{r} \in V(G)^{i}$ with $\bar{u}=\bar{z}_{0}$ and $\bar{v}=\bar{z}_{r}$ such that $G \models \varphi\left(\bar{z}_{\ell}, \bar{z}_{\ell+1}\right)$ for all $\ell<r$.

Every $\mathrm{FO}+$ conn $_{k}$ formula can be expressed in TC_{k}^{1} because the conn ${ }_{k}$ operator can be expressed with the help of the transitive-closure operator:

$$
\operatorname{conn}_{k}\left(x, y, z_{1}, \ldots, z_{k}\right)=\left[\mathrm{TC}_{v, w} E(v, w) \wedge v \neq z_{1} \wedge \ldots \wedge v \neq z_{k} \wedge w \neq z_{1} \wedge \ldots \wedge w \neq z_{k}\right](x, y)
$$

In fact, TC_{k}^{1} is more expressible than $\mathrm{FO}+\operatorname{conn}_{k}$, as it can express bipartiteness [25, Example 7.2]. We repeat the example for readers not familiar with transitive-closure logics. A graph is bipartite if and only if it does not contain an odd cycle, which is expressed by the following formula:

$$
\neg \exists u \exists v\left(\left[\mathrm{TC}_{x, y} \exists z(E(x, z) \wedge E(z, y))\right](u, v) \wedge E(v, u)\right)
$$

On the other hand, 2-connectivity can naturally be expressed in $\mathrm{FO}+$ conn ${ }_{1}$, but, as we prove next, not in TC_{0}^{1}. We thank Martin Grohe for pointing us to the proof idea of the following theorem.

Theorem 5.1. 2-connectivity cannot be expressed in TC_{0}^{1}.
To prove this theorem, we construct two graphs that cannot be distinguished by transitive closure logic TC_{0}^{1} but only one of the graphs is 2-connected. We will rely on Gaifman's Locality Theorem [21]. Let G be a graph and $r>0$ an integer. For $v \in V(G)$ we write $N_{r}(v)$ for the r-neighborhood of v, that is, the set of vertices at distance at most r from v. For a tuple \bar{v} of vertices we let $N_{r}(\bar{v})=\bigcup_{v \in \bar{v}} N_{r}(v)$. A formula $\varphi(\bar{x})$ over graphs is called r-local if for every graph G and every $|\bar{x}|$-tuple \bar{v} we have $G \vDash \varphi(v) \Leftrightarrow G\left[N_{r}(\bar{v})\right] \vDash \varphi(\bar{v})$. We write $\varphi^{(r)}$ to indicate that φ is r-local. Note that for every fixed r there exists an FO-formula dist $(x, y)>r$, stating that the distance between x and y is greater than r.

Theorem 5.2 (Gaifman's Locality Theorem [21] (adapted for graphs)). Every FO formula $\varphi(\bar{x})$ over graphs is equivalent to a Boolean combination of the following:

- local formulas $\psi^{(r)}(\bar{x})$ around \bar{x};
- basic local sentences (with parameters r and s) of the form

$$
\exists x_{1} \ldots \exists x_{s}\left(\bigwedge_{i=1}^{s} \chi^{(r)}\left(x_{i}\right) \wedge \bigwedge_{1 \leq i<j \leq s} \operatorname{dist}\left(x_{i}, x_{j}\right)>2 r\right)
$$

for some r-local FO formula $\chi^{(r)}$.
Furthermore, if $\mathrm{qr}(\varphi)=q$, then $r \leq 7^{q}, s \leq q+|\bar{x}|$. If φ is a sentence, then only basic local sentences appear in the Boolean combination.

In regular high-girth graphs, we have the following corollary. Recall that the girth g of a graph G is the length of a shortest cycle in G.

Corollary 5.3. Let $q, d>0$ be integers, let $r=7^{q}, s=q+2$ and $g=4 r+1$. Let G, H be two d-regular graphs of girth at least g with $|V(G)|,|V(H)| \geq s \cdot d^{2 r+1}$ and $\varphi \in \operatorname{FO}[q]$. Then
(1) G and H satisfy the same basic local sentences with parameters r and s. As a consequence, $G \equiv_{q} H$.
(2) If $u, v \in V(G)$ and $u^{\prime}, v^{\prime} \in V(H)$ with $\operatorname{dist}(u, v)>2 r$ and $\operatorname{dist}\left(u^{\prime}, v^{\prime}\right)>2 r$, then $G \vDash \varphi(u, v) \Leftrightarrow H \vDash \varphi\left(u^{\prime}, v^{\prime}\right)$.
(3) If $u, v \in V(G)$ and $u^{\prime}, v^{\prime} \in V(H)$ with $\operatorname{dist}(u, v)=\operatorname{dist}\left(u^{\prime}, v^{\prime}\right)$, then $G \vDash \varphi(u, v) \Leftrightarrow H \models \varphi\left(u^{\prime}, v^{\prime}\right)$.

Proof. As G and H are d-regular and have girth at least $g=4 r+1$, for all $u, v \in V(G), u^{\prime}, v^{\prime} \in V(H)$ we have $G\left[N_{r}(u)\right] \cong G\left[N_{r}(v)\right] \cong H\left[N_{r}\left(u^{\prime}\right)\right] \cong H\left[N_{r}\left(v^{\prime}\right)\right]$; that is, the r-neighborhoods of all vertices are isomorphic (the neighborhoods induce d-regular trees). Consequently, for every r-local formula $\chi(x)$ and all $u, v \in V(G)$ and $u^{\prime}, v^{\prime} \in V(H)$ we have $G \vDash \chi(u) \Leftrightarrow G \vDash \chi(v) \Leftrightarrow H \vDash \chi\left(u^{\prime}\right) \Leftrightarrow H \vDash \chi\left(v^{\prime}\right)$. As G is d-regular, we have $\left|N_{2 r}(v)\right| \leq d^{2 r+1}$ for all $v \in V(G) \cup V(H)$. As $|V(G)|,|V(H)| \geq s \cdot d^{2 r+1}$, if for some (and hence for all) $v \in V(G)$ we have $G \vDash \chi(v)$ and hence for some (and hence for all) $v^{\prime} \in V(H)$ we have $H \vDash \chi\left(v^{\prime}\right)$, then there exist at least
s vertices in G and in H that satisfy χ and have pairwise distance greater than $2 r$ (iteratively choose vertices and remove the $2 r$-neighborhood, so that the next vertex can be chosen without conflicts). Hence, G and H satisfy the same basic local sentences with parameters r and s. As χ was chosen as an arbitrary r-local formula, by Theorem 5.2 we have $G \equiv_{q} H$.

For the second statement, translate $\varphi(x, y)$ into Gaifman normal form by using Theorem 5.2. By the first statement, G and H satisfy the same basic local sentences with parameters r and s. Hence, we need to prove only that all $u, v \in V(G)$ and $u^{\prime}, v^{\prime} \in V(G)$ with $\operatorname{dist}(u, v)>2 r$ and $\operatorname{dist}\left(u^{\prime}, v^{\prime}\right)>2 r$ satisfy the same r-local formulas. This however is clear, as $N_{r}(u, v) \cong N_{r}\left(u^{\prime}, v^{\prime}\right)$ with isomorphisms that map u to u^{\prime} and v to v^{\prime} (the neighborhoods induce forests consisting of two d-regular trees).

Similarly, for the third statement, if $\operatorname{dist}(u, v)=\operatorname{dist}\left(u^{\prime}, v^{\prime}\right) \leq 2 r$, then $G\left[N_{r}(u, v)\right] \cong H\left[N_{r}\left(u^{\prime}, v^{\prime}\right)\right]$ (by the assumption on the girth of G and H, these neighborhoods induce isomorphic d-regular trees with two distinguished vertices at the same distance) with isomorphisms that map u to u^{\prime} and v to v^{\prime}. Hence, $G \vDash \varphi(u, v) \Leftrightarrow H \vDash \varphi\left(u^{\prime}, v^{\prime}\right)$.

We now construct two 12-regular graphs of high girth, G_{q} and H_{q}, where H_{q} is 2-connected, but G_{q} is only 1 -connected and not 2 -connected. Our construction is based on Cayley graphs, which encode the abstract structure of groups. We do not care about the concrete constructions of Cayley graphs but only about their nice properties.

Lemma 5.4. For every $q \in \mathbb{N}$ there exists a graph C_{q} that is 12 -regular, 2-connected, has girth $g=7^{q}!+1$, and a unique cycle of length g (all other cycles are longer).

Proof. It is known that every finite connected Cayley graph of degree d is $\left\lceil\frac{2(d+1)}{3}\right\rceil$-connected [2, Theorem 3.7] and there exist arbitrarily large (connected) d-regular Cayley graphs C whose girth is $g^{\prime} \geq \log _{d-1}|C|$ [14]. Therefore, there exists a 12-regular Cayley graph C that is 9 -connected and has girth $g^{\prime} \geq \log _{11}|C|$ where the girth only depends on the size of the graph.

We take such a Cayley graph C_{q}^{\prime} with a girth $g^{\prime}>2 \cdot 7^{q}!+2$. Then, there exists a cycle of length g^{\prime} in C_{q}^{\prime}. We now choose four vertices v_{1}, \ldots, v_{4} of this cycle such that $\operatorname{dist}\left(v_{1}, v_{3}\right)=1$, $\operatorname{dist}\left(v_{2}, v_{4}\right)=1$ and $\operatorname{dist}\left(v_{1}, v_{2}\right)=7^{q}!$. By removing the edges $\left(v_{1}, v_{3}\right)$ and $\left(v_{2}, v_{4}\right)$ and adding the new edges $\left(v_{1}, v_{2}\right)$ and $\left(v_{3}, v_{4}\right)$ (see Figure 3), we obtain the graph C_{q}.

By construction, C_{q}^{\prime} is 12 -regular and 9-connected. Every vertex in C_{q} still has twelve neighbors and even by removing the edges $\left(v_{1}, v_{3}\right)$ and $\left(v_{2}, v_{4}\right)$, the graph stays at least 2 -connected.

Concerning the girth, we constructed a unique cycle of length g going from v_{1} over v_{2} to v_{1}. Furthermore, there are no shorter cycles: Every cycle that does not use the edge $\left\{v_{1}, v_{2}\right\}$ has length greater than g^{\prime}.

We can now use this graph C_{q} to construct the graphs G_{q} and H_{q} where H_{q} is 2-connected, but G_{q} is not 2-connected, see Figure 4. To this end, we take six disjoint copies of the graph C_{q}, namely A_{1}, \ldots, A_{6}, and connect them in the following way: To construct the graph G_{q}, we choose in the six components A_{1}, \ldots, A_{6} two adjacent vertices $a_{i}, a_{i}^{\prime} \in V\left(A_{i}\right)$ for every $1 \leq i \leq 6$ that do not lie on the unique cycle of length g. Then, we remove the edges $\left\{a_{i}, a_{i}^{\prime}\right\}$ for every $1 \leq i \leq 6$ and add a new vertex a and new edges $\left\{a, a_{i}\right\},\left\{a, a_{i}^{\prime}\right\}$ for every $1 \leq i \leq 6$. The graph G_{q} is thus defined as:

$$
\begin{aligned}
G_{q}= & \left(V\left(A_{1}\right) \cup \ldots \cup V\left(A_{6}\right) \cup\{a\},\right. \\
& \left.\left(E\left(A_{1}\right) \backslash\left\{\left\{a_{1}, a_{1}^{\prime}\right\}\right\}\right) \cup \ldots \cup\left(E\left(A_{6}\right) \backslash\left\{\left\{a_{6}, a_{6}^{\prime}\right\}\right\}\right) \cup\left\{\left\{a, a_{1}\right\},\left\{a, a_{1}^{\prime}\right\}, \ldots,\left\{a, a_{6}\right\},\left\{a, a_{6}^{\prime}\right\}\right\}\right)
\end{aligned}
$$

To construct the graph H_{q}, we take the same steps as for G_{q} but twice: We also take six disjoint copies of C_{q}, namely A_{1}, \ldots, A_{6}. Then, we choose in the six components A_{1}, \ldots, A_{6} two adjacent vertices $a_{i}, a_{i}^{\prime} \in V\left(A_{i}\right)$ for every $1 \leq i \leq 6$ that do not lie in the constructed cycle of length g. Additionally, we choose two adjacent vertices $b_{i}, b_{i}^{\prime} \in V\left(A_{i}\right)$ for every $1 \leq i \leq 6$ that do not lie on the constructed cycle of length g such that the vertices a_{i}

30:18 • N. Schirrmacher, S. Siebertz and A. Vigny

Fig. 3. The cycle of length $g^{\prime}>2 \cdot 7^{9}!+2$. By removing the dashed edges and adding the dotted edges, we obtain a unique cycle of length $g=7^{q}!+1$.

(a) G_{q}

(b) H_{q}

Fig. 4. Construction of G_{q} and H_{q}
and b_{i} as well as the vertices a_{i}^{\prime} and b_{i}^{\prime} have distance at least g. Then, we remove the edges $\left\{a_{i}, a_{i}^{\prime}\right\},\left\{b_{i}, b_{i}^{\prime}\right\}$ for every $1 \leq i \leq 6$ and add two new vertices a and b and new edges $\left\{a, a_{i}\right\},\left\{a, a_{i}^{\prime}\right\},\left\{b, b_{i}\right\},\left\{b, b_{i}^{\prime}\right\}$ for every $1 \leq i \leq 6$.

Formally, the graph H_{q} is defined as:

$$
\begin{aligned}
H_{q}=(& V\left(A_{1}\right) \cup \ldots \cup V\left(A_{6}\right) \cup\{a, b\}, \\
& \left(E\left(A_{1}\right) \backslash\left\{\left\{a_{1}, a_{1}^{\prime}\right\},\left\{b_{1}, b_{1}^{\prime}\right\}\right\}\right) \cup \ldots \cup\left(E\left(A_{6}\right) \backslash\left\{\left\{a_{6}, a_{6}^{\prime}\right\},\left\{b_{6}, b_{6}^{\prime}\right\}\right\}\right) \\
& \left.\cup\left\{\left\{a, a_{1}\right\},\left\{a, a_{1}^{\prime}\right\},\left\{b, b_{1}\right\},\left\{b, b_{1}^{\prime}\right\}, \ldots,\left\{a, a_{6}\right\},\left\{a, a_{6}^{\prime}\right\},\left\{b, b_{6}\right\},\left\{b, b_{6}^{\prime}\right\}\right\}\right)
\end{aligned}
$$

Lemma 5.5. The constructed graphs G_{q} and H_{q} are 12 -regular and have girth $g=7 q!+1$. Furthermore, H_{q} is 2-connected and G_{q} is connected but not 2-connected.

Proof. By construction, the graphs G_{q} and H_{q} are 12-regular because the components A_{1}, \ldots, A_{6} are 12regular and the added vertices a and b also have twelve neighbors. Furthermore, they have girth g because the components A_{1}, \ldots, A_{6} have girth g, and we do not destroy the cycles of length g or introduce shorter cycles.

Both graphs, G_{q} and H_{q} are connected. However, G_{q} is not 2-connected because it becomes disconnected by removing the vertex $a \in V\left(G_{q}\right)$. The graph H_{q} only becomes disconnected by removing the vertices a and b or more vertices because A_{1}, \ldots, A_{6} are 2-connected as well. Hence, H_{q} is 2-connected.

In what follows, we show that (for sufficiently large q) the graphs G_{q} and H_{q} cannot be distinguished by TC_{0}^{1} formulas. More precisely, we show that over these graphs, the TC_{0}^{1} operator is useless: Either every pair of vertices is a solution, or none is. To show this, we first prove that between any two vertices, there is an r-walk.

Definition 5.6. Given two vertices a, b in a graph G and an integer r, an r-walk from a to b is a sequence $c_{0}, c_{1}, \ldots c_{m}$ such that $c_{0}=a, c_{m}=b$ and $\forall i<m: \operatorname{dist}\left(c_{i}, c_{i+1}\right)=r$.

Note that the existence of an r-walk between a and b does not imply that the distance of a and b is a multiple of r as the r-walk might not go through the shortest path. Note also that the existence of a walk from a to b of length a multiple of r might not imply the existence of an r-walk. For example in a graph with two adjacent vertices a, b, there is a walk $a-b-a-b$ of length 3, while there is no 3-walk from a to b.

Lemma 5.7. For all integers q, r with $r \leq 7^{q}$ and for all $a, b \in V\left(G_{q}\right)$ (resp. for all $a, b \in V\left(H_{q}\right)$) there exists an r-walk from a to b.

Proof. Let $g=7^{q}!+1$ be the girth of G_{q} (resp. H_{q}). Recall that the shortest cycle S of length g is unique by construction. Since $r \leq 7^{q}$ divides 7^{q} !, it follows that $g \equiv 1[r]$.
Let a^{\prime} be a vertex of S such that $\operatorname{dist}\left(a, a^{\prime}\right) \equiv 0[r]$ and b^{\prime} be a vertex of S such that $\operatorname{dist}\left(b, b^{\prime}\right) \equiv 0[r]$. This implies that there is an r-walk from a to a^{\prime} and from b to b^{\prime}.
Let $d=\operatorname{dist}\left(a^{\prime}, b^{\prime}\right)$. We can define an r-walk from a^{\prime} to b^{\prime} that traverses the cycle $S m$ many times where we choose m such that $m-d \equiv 0[r]$. Such m exists since the length of S is $1[r]$. Observe now that we can concatenate the r-walks from a to a^{\prime}, from a^{\prime} to b^{\prime} and from b^{\prime} to b.

Lemma 5.8. For all TC_{0}^{1} formulas $\varphi=\left[\mathrm{TC}_{u, v} \Psi(u, v)\right](x, y)$ there exists $q \in \mathbb{N}$ such that either
(1) $\quad G_{q} \models \forall x, y \varphi(x, y) \quad$ and $\quad H_{q} \vDash \forall x, y \varphi(x, y)$, or
(2) $\quad G_{q} \vDash \forall x, y \neg \varphi(x, y) \quad$ and $\quad H_{q} \vDash \forall x, y \neg \varphi(x, y)$.

In a nutshell, Lemma 5.8 shows that the graphs G_{q} and H_{q} are too regular for TC operators to define anything else than true or false statements. The proof is performed by induction on the nesting of the TC operator. In the base case, Ψ is an FO formula.

Proof. Let $\varphi=\left[\mathrm{TC}_{u, v} \Psi(u, v)\right](x, y)$ and let q be the quantifier rank of Ψ, that is $\Psi \in \mathrm{FO}[q]$. Let $r_{0}=7^{q}$.
If there are no elements u, v in $V\left(G_{q}\right)$ nor in $V\left(H_{q}\right)$ satisfying φ, then (2) of Lemma 5.8 holds. Assume now that there exist $a, b \in V\left(G_{q}\right)$ such that $G_{q} \vDash \varphi(a, b)$. By the definition of the TC operator, there exists a sequence c_{0}, \ldots, c_{m} with $c_{0}=a$ and $c_{m}=b$ such that $G_{q} \vDash \Psi\left(c_{i}, c_{i+1}\right)$ for all $i<m$. Let $r_{1}=\operatorname{dist}\left(c_{0}, c_{1}\right)$.
(1) Assume first $r_{1} \leq r_{0}$. By Lemma 5.7, for all $u, v \in V\left(G_{q}\right)$ (resp. in $V\left(H_{q}\right)$) there exists an r_{1}-walk d_{0}, \ldots, d_{n} with $d_{0}=u$ and $d_{n}=v$ and $G_{q}\left(\right.$ resp. $\left.H_{q}\right)$ is a model of $\Psi\left(d_{i}, d_{i+1}\right)$ for every $i<n$. By the definition of the TC operator, $G_{q}\left(\right.$ resp. $\left.H_{q}\right)$ is a model of $\varphi(u, v)$.
(2) If $r_{1}>r_{0}$, then for all u, v in G_{q} (resp. H_{q}) there exists $w \operatorname{such}$ that $\operatorname{dist}(u, w)>r_{0}$ and $\operatorname{dist}(w, v)>r_{0}$ (since G_{q} is connected and contains a cycle of length $>2 r_{0}+1$) and then by Corollary 5.3 we have that G_{q} (resp. H_{q}) is a model of $\Psi(u, w)$ and $\Psi(w, v)$. By the definition of the TC operator, G_{q} (resp. H_{q}) is a model of $\varphi(u, v)$.
The case where the elements a, b satisfying φ are found in H_{q} is analogous.
For TC formulas $\varphi=\left[\mathrm{TC}_{u, v} \Psi(u, v)\right](x, y)$ where Ψ is not in FO, we can apply this procedure, replacing inductively the uses of TC operator by either the True or the False predicates.

We can then conclude that every TC_{0}^{1} formula (of quantifier rank at most q) is equivalent to an FO formula on the graphs G_{q} and H_{q}. This implies that no TC_{0}^{1} formula expresses 2-connectivity. This concludes the proof of Theorem 5.1. We conjecture that the statement of Theorem 5.1 generalizes to higher values of k. However, using the same proof idea, the proof for general $k \in \mathbb{N}$ would be more technical. The construction of the graphs might be similar but we would need to handle additional free variables in the transitive-closure operator which would result in more difficult proofs to show that both graphs model the same TC_{k}^{1}-formulas.

Conjecture 5.9. For every integer $k,(k+2)$-connectivity cannot be expressed in TC_{k}^{1}.

Fig. 5. Connections between the logics

6 CONCLUSION

We studied first-order logic enriched with connectivity predicates tailored to express algorithmic graph problems that are commonly studied in contemporary parameterized algorithmics. This yields separator logic, which can query connectivity after the deletion of a bounded number of elements, and disjoint-paths logic, which can express the disjoint paths problem. We demonstrated a rich expressiveness that arises from the interplay of these predicates with the nested quantification of first-order logic. We also studied the limits of expressiveness of these new logics.

In a companion paper, we studied the model checking problem for separator logic and proved that it is fixedparameter tractable parameterized by formula size on classes of graphs that exclude a fixed topological minor [32]. This yields a powerful algorithmic meta-theorem for separator logic.

Using the same methods it is easy to show that model checking for formulas using only conn ${ }_{1}$ predicates is fixed-parameter tractable on nowhere dense classes of graphs, which are even more general than classes
excluding a topological minor. To obtain this latter result, observe that the block decomposition of a graph can be understood as a tree decomposition with adhesion 1 such that each bag induces a 2 -connected graph and on 2-connected graphs $\mathrm{FO}+\operatorname{conn}_{1}$ collapses to plain FO. We can then in each bag apply the model checking result for FO on nowhere dense graphs [26] and apply the dynamic programming approach presented in [32] to combine the solutions to a global solution. On the other hand, when we allow conn ${ }_{2}$ predicates, there are some simple graph classes that do not exclude a topological minor but have bounded expansion, and on which model checking becomes AW[\star]-hard.

After the publication of the conference version of this paper it was also proved that the model checking problem for $\mathrm{FO}+\mathrm{DP}$ is fixed-parameter tractable on each class excluding a minor [23] and even on each class excluding a topological minor [37], providing an even stronger algorithmic meta-theorem.

It will now be interesting to study other extensions of first-order logic that can express further interesting algorithmic graph problems, such as reachability with regular paths queries. This would, in the simplest case, allow expressing bipartiteness and the odd cycle transversal problem. On the other hand, it is very likely that with general regular paths queries, we will get intractability beyond bounded treewidth graphs. The reason is that with the help of stronger path queries, it may be possible to encode all graphs in grids. By the results of Robertson and Seymour [35], a class has unbounded treewidth if and only if it contains all planar graphs, and in particular all grids as a minor. Hence, an encoding may be possible as soon as the treewidth is unbounded.

REFERENCES

[1] Akanksha Agrawal, Lawqueen Kanesh, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. 2021. An FPT algorithm for elimination distance to bounded degree graphs. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.
[2] László Babai. 1996. Automorphism Groups, Isomorphism, Reconstruction. MIT Press, Cambridge, MA, USA, 1447-1540.
[3] Mikołaj Bojańczyk. 2021. Separator logic and star-free expressions for graphs. arXiv preprint arXiv:2107.13953 (2021).
[4] Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé, and Szymon Torunczyk. 2022. Twin-width IV: ordered graphs and matrices. In STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, fune 20-24, 2022, Stefano Leonardi and Anupam Gupta (Eds.). ACM, 924-937.
[5] Jannis Bulian. 2017. Parameterized complexity of distances to sparse graph classes. Technical Report. University of Cambridge, Computer Laboratory.
[6] Jannis Bulian and Anuj Dawar. 2016. Graph isomorphism parameterized by elimination distance to bounded degree. Algorithmica 75, 2 (2016), 363-382.
[7] Michael Buro. 2000. Simple Amazons endgames and their connection to Hamilton circuits in cubic subgrid graphs. In International Conference on Computers and Games. Springer, 250-261.
[8] J. Richard Büchi. 1960. Weak Second-Order Arithmetic and Finite Automata. Mathematical Logic Quarterly 6, 1-6 (1960), 66-92.
[9] Thomas Colcombet. 2002. On families of graphs having a decidable first order theory with reachability. In Automata, Languages and Programming: 29th International Colloquium, ICALP 2002 Málaga, Spain, Fuly 8-13, 2002 Proceedings 29. Springer, 98-109.
[10] Bruno Courcelle. 1990. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and computation 85, 1 (1990), 12-75.
[11] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. 2000. Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems 33, 2 (2000), 125-150.
[12] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. 2015. Parameterized Algorithms. Springer.
[13] Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. 2019. Minimum Bisection Is Fixed-Parameter Tractable. SIAM 7. Comput. 48, 2 (2019), 417-450.
[14] Xavier Dahan. 2014. Regular graphs of large girth and arbitrary degree. Combinatorica 34, 4 (2014), 407-426.
[15] Emanuele D'Osualdo, Roland Meyer, and Georg Zetzsche. 2016. First-order logic with reachability for infinite-state systems. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science. 457-466.
[16] Heinz-Dieter Ebbinghaus and Jörg Flum. 2005. Finite model theory. Springer Science \& Business Media.
[17] Ronald Fagin. 1974. Generalized first-order spectra and polynomial-time recognizable sets. Complexity of computation 7 (1974), 43-73.
[18] Fedor V. Fomin, Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. 2020. An Algorithmic Meta-Theorem for Graph Modification to Planarity and FOL. In 28th Annual European Symposium on Algorithms, ESA 2020. 51:1-51:17.
[19] Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. 2022. Parameterized Complexity of Elimination Distance to First-Order Logic Properties. ACM Transactions on Computational Logic (TOCL) 23, 3 (2022), 1-35.
[20] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. 2020. Hitting topological minors is FPT. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing. 1317-1326.
[21] Haim Gaifman. 1982. On local and non-local properties. In Studies in Logic and the Foundations of Mathematics. Vol. 107. Elsevier, 105-135.
[22] Robert Ganian, Petr Hliněnỳ, Alexander Langer, Jan Obdržálek, Peter Rossmanith, and Somnath Sikdar. 2014. Lower bounds on the complexity of MSO1 model-checking. 7. Comput. System Sci. 80, 1 (2014), 180-194.
[23] Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. 2023. Model-Checking for First-Order Logic with Disjoint Paths Predicates in Proper Minor-Closed Graph Classes. In Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, Nikhil Bansal and Viswanath Nagarajan (Eds.). SIAM, 3684-3699.
[24] Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer, Moshe Y. Vardi, Yde Venema, and Scott Weinstein. 2007. Finite Model Theory and its applications. Springer Science \& Business Media.
[25] Martin Grohe. 2008. Logic, graphs, and algorithms. Logic and automata 2 (2008), 357-422.
[26] Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. 2017. Deciding first-order properties of nowhere dense graphs. Journal of the ACM ($7 A C M)$ 64, 3 (2017), 17.
[27] Eva-Maria C. Hols, Stefan Kratsch, and Astrid Pieterse. 2020. Elimination Distances, Blocking Sets, and Kernels for Vertex Cover. In STACS.
[28] Bart M. P. Jansen, Jari J. H. de Kroon, and Michał Włodarczyk. 2021. Vertex deletion parameterized by elimination distance and even less. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing. 1757-1769.
[29] Stephan Kreutzer and Siamak Tazari. 2010. Lower bounds for the complexity of monadic second-order logic. In 2010 25th Annual IEEE Symposium on Logic in Computer Science. IEEE, 189-198.
[30] Leonid Libkin. 2013. Elements of finite model theory. Springer Science \& Business Media.
[31] Alexander Lindermayr, Sebastian Siebertz, and Alexandre Vigny. 2020. Elimination Distance to Bounded Degree on Planar Graphs. In 45th International Symposium on Mathematical Foundations of Computer Science, MFCS 2020, August 24-28, 2020, Prague, Czech Republic. 65:1-65:12.
[32] Michal Pilipczuk, Nicole Schirrmacher, Sebastian Siebertz, Szymon Torunczyk, and Alexandre Vigny. 2022. Algorithms and Data Structures for First-Order Logic with Connectivity Under Vertex Failures. In 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France (LIPIcs, Vol. 229), Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 102:1-102:18.
[33] Bruce Reed, Kaleigh Smith, and Adrian Vetta. 2004. Finding odd cycle transversals. Operations Research Letters 32, 4 (2004), $299-301$.
[34] Neil Robertson and P.D. Seymour. 2004. Graph Minors. XX. Wagner's conjecture. Journal of Combinatorial Theory, Series B 92, 2 (2004), 325-357. Special Issue Dedicated to Professor W.T. Tutte.
[35] Neil Robertson and Paul D. Seymour. 1986. Graph minors. V. Excluding a planar graph. F. Comb. Theory, Ser. B 41, 1 (1986), 92-114.
[36] Neil Robertson and P. D. Seymour. 1995. Graph Minors. XIII. The Disjoint Paths Problem. F. Combin. Theory Ser. B 63 (1995), 65-110.
[37] Nicole Schirrmacher, Sebastian Siebertz, Giannos Stamoulis, Dimitrios M Thilikos, and Alexandre Vigny. 2023. Model Checking Disjoint-Paths Logic on Topological-Minor-Free Graph Classes. arXiv preprint arXiv:2302.07033 (2023).
[38] Stefan Schulz. 2010. First-order logic with reachability predicates on infinite systems. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
[39] Wolfgang Thomas. 1997. Languages, Automata, and Logic. In Handbook of Formal Languages, Volume 3: Beyond Words, Grzegorz Rozenberg and Arto Salomaa (Eds.). Springer, 389-455.
[40] Klaus Wagner. 1937. Über eine Eigenschaft der ebenen Komplexe. Math. Ann. 114, 1 (1937), 570-590.

[^0]: This paper is a part of the ANR-DFG project Unifying Theories for Multivariate Algorithms (UTMA), which has received funding from the German Research Foundation (DFG) with grant agreement No 446200270.
 We thank Martin Grohe and Marthe Bonamy for their insightful comments and pointers to literature.
 Authors’ address: Nicole Schirrmacher, schirrmacher@uni-bremen.de; Sebastian Siebertz, siebertz@uni-bremen.de; Alexandre Vigny, vigny@uni-bremen.de, University of Bremen, Germany.

 Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
 © 2023 Association for Computing Machinery.
 1529-3785/2023/7-ART30 \$15.00
 https://doi.org/10.1145/3595922

