
30

First-Order Logic with Connectivity Operators

NICOLE SCHIRRMACHER, SEBASTIAN SIEBERTZ, and ALEXANDRE VIGNY, University of

Bremen, Germany

First-order logic (FO) can express many algorithmic problems on graphs, such as the independent set and dominating set

problem parameterized by solution size. On the other hand, FO cannot express the very simple algorithmic question whether

two vertices are connected. We enrich FO with connectivity predicates that are tailored to express algorithmic graph problems

that are commonly studied in parameterized algorithmics. By adding the atomic predicates conn𝑘 (𝑥,𝑦, 𝑧1, . . . , 𝑧𝑘) that hold
true in a graph if there exists a path between (the valuations of) 𝑥 and 𝑦 after (the valuations of) 𝑧1, . . . , 𝑧𝑘 have been deleted,

we obtain separator logic FO+ conn. We show that separator logic can express many interesting problems such as the feedback

vertex set problem and elimination distance problems to first-order definable classes. Denote by FO + conn𝑘 the fragment

of separator logic that is restricted to connectivity predicates with at most 𝑘 + 2 variables (that is, at most 𝑘 deletions), we

show that FO + conn𝑘+1
is strictly more expressive than FO + conn𝑘 for all 𝑘 ≥ 0. We then study the limitations of separator

logic and prove that it cannot express planarity, and, in particular, not the disjoint paths problem. We obtain the stronger

disjoint-paths logic FO + DP by adding the atomic predicates disjoint-paths𝑘 [(𝑥1, 𝑦1), . . . , (𝑥𝑘 , 𝑦𝑘)] that evaluate to true if

there are internally vertex-disjoint paths between (the valuations of) 𝑥𝑖 and 𝑦𝑖 for all 1 ≤ 𝑖 ≤ 𝑘 . Disjoint-paths logic can

express the disjoint paths problem, the problem of (topological) minor containment, the problem of hitting (topological)

minors, and many more. Again we show that the fragments FO + DP𝑘 that use predicates for at most 𝑘 disjoint paths form a

strict hierarchy of expressiveness. Finally, we compare the expressive power of the new logics with that of transitive-closure

logics and monadic second-order logic.

CCS Concepts: • Theory of computation→ Finite Model Theory; • Mathematics of computing→ Combinatorics.

Additional Key Words and Phrases: first-order logic, graph theory, connectivity

ACM Reference Format:
Nicole Schirrmacher, Sebastian Siebertz, and Alexandre Vigny. 2023. First-Order Logic with Connectivity Operators. ACM
Trans. Comput. Logic 24, 4, Article 30 (July 2023), 22 pages. https://doi.org/10.1145/3595922

1 INTRODUCTION
Logic provides a very elegant way of formally describing computational problems. Fagin’s celebrated result from

1974 [17] established that existential second-order logic captures the complexity class NP. Fagin thereby provided

a machine-independent characterization of a complexity class and initiated the field of descriptive complexity

theory. Many other complexity classes were later characterized by logics in this theory. Today it remains one of

the major open problems whether there exists a logic capturing PTime.

This paper is a part of the ANR-DFG project Unifying Theories for Multivariate Algorithms (UTMA), which has received funding from the

German Research Foundation (DFG) with grant agreement No 446200270.

We thank Martin Grohe and Marthe Bonamy for their insightful comments and pointers to literature.

Authors’ address: Nicole Schirrmacher, schirrmacher@uni-bremen.de; Sebastian Siebertz, siebertz@uni-bremen.de; Alexandre Vigny,

vigny@uni-bremen.de, University of Bremen, Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Association for Computing Machinery.

1529-3785/2023/7-ART30 $15.00

https://doi.org/10.1145/3595922

ACM Trans. Comput. Logic, Vol. 24, No. 4, Article 30. Publication date: July 2023.

HTTPS://ORCID.ORG/0000-0002-1740-7478
HTTPS://ORCID.ORG/0000-0002-6347-1198
HTTPS://ORCID.ORG/0000-0002-4298-8876
https://doi.org/10.1145/3595922
https://orcid.org/0000-0002-1740-7478
https://orcid.org/0000-0002-6347-1198
https://orcid.org/0000-0002-4298-8876
https://doi.org/10.1145/3595922

30:2 • N. Schirrmacher, S. Siebertz and A. Vigny

In 1990 Courcelle proved that every graph problem definable in monadic second-order logic (MSO) can be

decided in linear time on graphs of bounded treewidth [10]. This theorem has a much more algorithmic (rather

than a complexity-theoretic) flavor, in the sense that, from a logical description of a problem, it derives an

algorithmic approach on how to solve it on certain graph classes. Grohe in his seminal survey coined the term

algorithmic meta-theorem for such theorems that provide general conditions on a problem and on the input

instances that, when satisfied, imply the existence of an efficient algorithm for the problem [25]. Courcelle’s

theorem for MSO was extended to graph classes with bounded cliquewidth [11] and it is known that these are

essentially the most general graph classes on which efficient MSO model checking [22, 29] is possible. MSO is a

powerful logic that can express many important algorithmic problems on graphs. With quantification over edges,

we can for example express the existence of a Hamiltonian path, the existence of a fixed minor or topological

minor, the disjoint paths problem, and many deletion problems. For a property Π, the task in the Π-deletion
problem is to find in a given graph 𝐺 a minimum-size subset 𝑆 of 𝑉 (𝐺) such that the graph 𝐺 − 𝑆 obtained from

𝐺 by removing 𝑆 has the property Π. Important examples of Π-deletion problems are the feedback vertex set

problem, the odd cycle transversal problem, or the problem of hitting all minors or topological minors from

a given list F . We refer to [13] for the formal definitions of the mentioned algorithmic problems. Also, many

elimination distance problems recently studied [6] in parameterized algorithmics can be expressed in MSO.

However, as we have seen, this expressiveness comes at the price of algorithmic intractability already on very

restricted graph classes. This cannot be a surprise as e.g. the Hamiltonian path problem is NP-complete already

on planar graphs of maximum degree 3 [7].

First-order logic (FO) is much weaker than MSO and not surprisingly, the model checking problem can be

solved efficiently on much more general graph classes. FO model checking is fixed-parameter tractable on a

subgraph-closed class C if and only if C is nowhere dense [26] and a recent breakthrough result showed that it

is fixed-parameter tractable on a class C of ordered graphs if and only if C has bounded twin-width [4]. FO is

weaker than MSO but it can still express many important problems such as the independent set problem and

dominating set problem parameterized by solution size, the Steiner tree problem parameterized by the number

of Steiner vertices, and many more problems. On the other hand, first-order logic cannot even express the

algorithmically extremely simple problem of whether a graph is connected. Also, the other algorithmic problems

mentioned before are not expressible in FO, even though some of them are fixed-parameter tractable on general

graphs. For example, we can efficiently test for a fixed minor or topological minor and solve the disjoint paths

problem [36]. Many Π-deletion problems are fixed-parameter tractable, see e.g. [12, 20, 33], as well as many

elimination distance problems [1, 18].

The fact that first-order logic can only express local problems is classically addressed by adding transitive-

closure or fixed-point operators, see e.g. [16, 24, 30]. Unfortunately, this again comes at the price of intractable

model checking for very restricted graph classes. For example, even the model checking problem for the very

restricted monadic transitive-closure logic TC
1
studied by Grohe [25], is AW[★]-hard on planar graphs of

maximum degree at most 3 [25, Theorem 7.3]. Extensions of first-order logic with a reachability predicate or

with predicates for reachability with an additional regular expression (over labeled transitions) are studied for

example in [9, 15, 38]. These extensions play an important role for specification in system analysis, as they can

express safety and liveness conditions (in transition systems). The main focus of study for these latter logics are

questions of decidability. Furthermore, they fall short of being able to express the above mentioned algorithmic

graph problems.

Thismotivates our presentwork inwhichwe enrich first-order logicwithmore powerful connectivity predicates.

The extensions are tailored to express algorithmic graph problems that are studied in recent parameterized

algorithmics. Adding the atomic predicate conn0 (𝑥,𝑦) that evaluates to true on a graph 𝐺 if (the valuations of) 𝑥

and 𝑦 are connected in𝐺 yields the mentioned extension of first-order logic with a reachability predicate. This

predicate easily generalizes to directed graphs but for simplicity, we work with undirected graphs only. Of course,

ACM Trans. Comput. Logic, Vol. 24, No. 4, Article 30. Publication date: July 2023.

First-Order Logic with Connectivity Operators • 30:3

with this predicate we can express connectivity of graphs, however, it falls short of expressing other interesting

graph problems, e.g. it cannot express that a graph is acyclic. We hence introduce more general predicates

conn𝑘 (𝑥,𝑦, 𝑧1, . . . , 𝑧𝑘), parameterized by a number 𝑘 , that evaluate to true on a graph𝐺 if (the valuations of) 𝑥

and 𝑦 are connected in 𝐺 once (the valuations of) 𝑧1, . . . , 𝑧𝑘 have been deleted. The interplay of these predicates

with the usual nesting of first-order quantification makes the new logic FO + conn already quite powerful. For

example, we can express simple graph problems such as 2-connectivity by∀𝑧∀𝑥∀𝑦
(
𝑥 ≠ 𝑧∧𝑦 ≠ 𝑧 → conn1 (𝑥,𝑦, 𝑧)

)
.

We can also express many deletion problems, such as the feedback vertex set problem, and the elimination distance

to bounded degree, and more generally, elimination distance to any fixed first-order property.

We also point to Mikołaj Bojańczyk’s work [3], who independently introduced FO + conn and proposed

the name separator logic. He studied a variant of star-free expressions for graphs and showed that these two

formalisms for defining graph languages are equivalent. We follow his suggestion for the name of the new logic

and thank Mikołaj for the discussion on separator logic.

In Section 3 we study the expressive power of separator logic. We give examples of problems expressible with

separator logic as well as proofs that certain problems, such as planarity and in particular the disjoint paths

problem, are not expressible in separator logic. We show that (𝑘 + 2)-connectivity of a graph cannot be expressed

with only conn𝑘 predicates and conclude that the restricted use of these predicates induces a natural hierarchy of

expressiveness.

The fact that planarity and the disjoint paths problem cannot be expressed in separator logic motivates us

to define an even stronger logic that can express these problems. We define atomic predicates of the form

disjoint-paths𝑘 [(𝑥1, 𝑦1), . . . , (𝑥𝑘 , 𝑦𝑘)] that evaluate to true if and only if there are 𝑘 internally vertex-disjoint

paths between (the valuations of) 𝑥𝑖 and 𝑦𝑖 for all 1 ≤ 𝑖 ≤ 𝑘 . Connectivity of 𝑥 and 𝑦 can be tested by

disjoint-paths
1
[(𝑥,𝑦)]. More generally, the so obtained disjoint-paths logic FO + DP strictly extends separator

logic. With this more powerful logic, we can test if a graph contains a fixed minor or topological minor, and in

particular, test for planarity. In combination with first-order quantification, we can also express many Π-deletion
problems such as the problem of hitting all minors or topological minors from a given list F . On the other hand,

we cannot express the odd cycle transversal problem, as we cannot even express bipartiteness of a graph. We

study the expressive power of FO + DP in Section 4. Among other results, we prove that again an increase in the

number of disjoint paths in the predicates leads to an increase in expressive power.

Note that while it would be desirable to be able to express bipartiteness, which is equivalent to 2-colorability, it

is not desirable to express general colorability problems, as we aim for logics that are tractable on planar graphs

and beyond, while the 3-colorability problem is NP-complete on planar graphs. This example shows again that it

is a delicate balance between expressiveness and tractability and it will be a challenging and highly interesting

problem in future work to find the right set of predicates to express even more algorithmic graph problems while

at the same time having tractable model checking.

We conclude the paper in Section 5 with a comparison between the newly introduced logics and more

established ones, like MSO and transitive-closure logics.

2 PRELIMINARIES
Graphs. In this paper, we deal with finite and simple undirected graphs. Let 𝐺 be a graph. We write 𝑉 (𝐺) for
the vertex set of 𝐺 and 𝐸 (𝐺) for its edge set. For a set 𝑋 ⊆ 𝑉 (𝐺) we write 𝐺 [𝑋] for the subgraph of 𝐺 induced

by 𝑋 and𝐺 −𝑋 for the subgraph induced by 𝑉 (𝐺) \𝑋 . For a singleton set {𝑣} we write𝐺 − 𝑣 instead of𝐺 − {𝑣}.
A path 𝑃 in 𝐺 is a subgraph on distinct vertices 𝑣1, . . . , 𝑣𝑡 with {𝑣𝑖 , 𝑣𝑖+1} ∈ 𝐸 (𝑃) for all 1 ≤ 𝑖 < 𝑡 and a path 𝑃 is

said to connect its endpoints 𝑣1 and 𝑣𝑡 . Two paths are internally vertex-disjoint if and only if every vertex that

appears in both paths is an endpoint of both paths. The graph 𝐺 is connected if every two of its vertices are

connected by a path. It is 𝑘-connected if 𝐺 has more than 𝑘 vertices and 𝐺 − 𝑋 is connected for every subset

ACM Trans. Comput. Logic, Vol. 24, No. 4, Article 30. Publication date: July 2023.

30:4 • N. Schirrmacher, S. Siebertz and A. Vigny

𝑋 ⊆ 𝑉 (𝐺) of size strictly smaller than 𝑘 . A cycle 𝐶 in 𝐺 is a subgraph on distinct vertices 𝑣1, . . . , 𝑣𝑡 , 𝑡 ≥ 3, with

{𝑣𝑖 , 𝑣𝑖+1} ∈ 𝐸 (𝐶) for all 1 ≤ 𝑖 < 𝑡 and {𝑣𝑡 , 𝑣1} ∈ 𝐸 (𝐶). An acyclic graph is a forest and a connected acyclic graph

is a tree.
A graph 𝐻 is a minor of 𝐺 , denoted 𝐻 ≼ 𝐺 , if for all 𝑣 ∈ 𝑉 (𝐻) there are pairwise vertex-disjoint connected

subgraphs𝐺𝑣 of𝐺 such that whenever {𝑢, 𝑣} ∈ 𝐸 (𝐻), then there are 𝑥 ∈ 𝑉 (𝐺𝑢) and𝑦 ∈ 𝑉 (𝐺𝑣) with {𝑥,𝑦} ∈ 𝐸 (𝐺).
The subgraph 𝐺𝑣 is called the branch set of 𝑣 in 𝐺 . The graph 𝐻 is a topological minor of 𝐺 , denoted 𝐻 ≼𝑡𝑜𝑝 𝐺 , if
for all 𝑣 ∈ 𝑉 (𝐻) there is a distinct vertex 𝑥𝑣 in 𝐺 and for all {𝑢, 𝑣} ∈ 𝐸 (𝐻) there are internally vertex-disjoint

paths 𝑃𝑢𝑣 in𝐺 with endpoints 𝑥𝑢 and 𝑥𝑣 . The vertices 𝑥𝑣 are called the principal vertices of the topological minor

model of 𝐻 in𝐺 . A graph is planar if and only if it contains neither 𝐾5, the complete graph on 5 vertices, nor 𝐾3,3,

the complete bipartite graph with two partitions of size 3, as a minor [40].

Logic. In this work, we deal with structures over purely relational signatures. A (purely relational) signature

is a collection of relation symbols, each with an associated arity. Let 𝜎 be a signature. A 𝜎-structure 𝔄 consists

of a non-empty set 𝐴, the universe of 𝔄, together with an interpretation of each 𝑘-ary relation symbol 𝑅 ∈ 𝜎
as a 𝑘-ary relation 𝑅𝔄 ⊆ 𝐴𝑘 . For a subset 𝑋 ⊆ 𝐴 we write 𝔄 [𝑋] for the substructure induced by 𝑋 . A partial
isomorphism between 𝜎-structures 𝔄 and 𝔅 is an isomorphism between 𝔄 [𝑋] and 𝔅[𝑌] for some subset 𝑋 ⊆ 𝐴
of the universe 𝐴 of 𝔄 and some subset 𝑌 ⊆ 𝐵 of the universe 𝐵 of 𝔅.

We assume an infinite supply Var of variables. First-order 𝜎-formulas are built from the atomic formulas 𝑥 = 𝑦,

where 𝑥 and 𝑦 are variables, and 𝑅(𝑥1, . . . , 𝑥𝑘), where 𝑅 ∈ 𝜎 is a 𝑘-ary relation symbol and 𝑥1, . . . , 𝑥𝑘 are variables,

by closing under the Boolean connectives ¬, ∧ and ∨, and by existential and universal quantification ∃𝑥 and ∀𝑥 .
A variable 𝑥 not in the scope of a quantifier is a free variable. A formula without free variables is a sentence. The
quantifier rank qr(𝜑) of a formula 𝜑 is the maximum nesting depth of quantifiers in 𝜑 . We write FO𝜎 [𝑞] for the
set of all FO 𝜎-formulas of quantifier rank at most 𝑞, or simply FO[𝑞] if 𝜎 is clear from the context. A formula

without quantifiers is called quantifier-free.
If 𝔄 is a 𝜎-structure with universe 𝐴, then an assignment of the variables in 𝔄 is a mapping 𝑎 : Var → 𝐴. We

use the standard notation (𝔄, 𝑎) |= 𝜑 (𝑥) or 𝔄 |= 𝜑 (𝑎) to indicate that 𝜑 is satisfied in 𝔄 when the free variables 𝑥

of 𝜑 have been assigned by 𝑎. We refer e.g. to the textbook [30] for more background on first-order logic.

3 SEPARATOR LOGIC
In this section, we study the expressive power of separator logic FO + conn. Formally, we assume that 𝜎 is a

signature that does not contain any of the relation symbols conn𝑘 for all 𝑘 ≥ 0, and that it does contain a binary

relation symbol 𝐸, representing an edge relation. We assume that 𝐸 is always interpreted as an irreflexive and

symmetric relation and connectivity will always refer to this relation. We let 𝜎 + conn B 𝜎 ∪ {conn𝑘 : 𝑘 ≥ 0},
where each conn𝑘 is a (𝑘 + 2)-ary relation symbol.

Definition 3.1. The formulas of (FO + conn)𝜎 are the formulas of FO𝜎+conn. We usually simply write FO + conn,

when 𝜎 is understood from the context.

For a 𝜎-structure 𝔄, an assignment 𝑎 and an FO + conn formula 𝜑 (𝑥), we define the satisfaction relation

(𝔄, 𝑎) |= 𝜑 (𝑥) as for first-order logic, where an atomic predicate conn𝑘 (𝑥,𝑦, 𝑧1, . . . , 𝑧𝑘) is evaluated as follows.

Assume that the universe of 𝔄 is 𝐴 and let𝐺 = (𝐴, 𝐸𝔄) be the graph on vertex set 𝐴 and edge set 𝐸𝔄 . Then (𝔄, 𝑎)
is a model of conn𝑘 (𝑥,𝑦, 𝑧1, . . . , 𝑧𝑘) if and only if 𝑎(𝑥) and 𝑎(𝑦) are connected in 𝐺 − {𝑎(𝑧1), . . . , 𝑎(𝑧𝑘)}.

Note in particular that if 𝑎(𝑥) = 𝑎(𝑧𝑖) or 𝑎(𝑦) = 𝑎(𝑧𝑖) for some 𝑖 ≤ 𝑘 , then (𝔄, 𝑎) ̸|= conn𝑘 (𝑥,𝑦, 𝑧1, . . . , 𝑧𝑘).
We write FO + conn𝑘 for the fragment of FO + conn that uses only connℓ predicates for ℓ ≤ 𝑘 . The quantifier

rank of an FO + conn formula is defined as for plain first-order logic. For structures 𝔄 with universe 𝐴 and

𝑎 ∈ 𝐴𝑚 and 𝔅 with universe 𝐵 and
¯𝑏 ∈ 𝐵𝑚 , we write (𝔄, 𝑎) ≡conn (𝔅, ¯𝑏) if (𝔄, 𝑎) and (𝔅, ¯𝑏) satisfy the same

FO + conn formulas, that is, for all 𝜑 (𝑥) ∈ FO + conn we have 𝔄 |= 𝜑 (𝑎) ⇔ 𝔅 |= 𝜑 (¯𝑏). Similarly, we write

ACM Trans. Comput. Logic, Vol. 24, No. 4, Article 30. Publication date: July 2023.

First-Order Logic with Connectivity Operators • 30:5

(𝔄, 𝑎) ≡conn𝑘
(𝔅, ¯𝑏) and (𝔄, 𝑎) ≡conn𝑘,𝑞

(𝔅, ¯𝑏) if (𝔄, 𝑎) and (𝔅, ¯𝑏) satisfy the same FO + conn𝑘 formulas and the

same FO + conn𝑘 formulas of quantifier rank at most 𝑞, respectively.

3.1 Expressive power of separator logic
We now give examples of graph problems that are expressible with separator logic.

Example 3.2. Connectivity is expressible in FO + conn0 by the formula

∀𝑥∀𝑦
(
conn0 (𝑥,𝑦)

)
.

More generally, for every non-negative integer 𝑘 , (𝑘 + 1)-connectivity can be expressed by the formula

∀𝑥∀𝑦∀𝑧1 . . .∀𝑧𝑘
(∧
1≤𝑖≤𝑘

(𝑥 ≠ 𝑧𝑖 ∧ 𝑦 ≠ 𝑧𝑖) → conn𝑘 (𝑥,𝑦, 𝑧1, . . . , 𝑧𝑘)
)
.

Example 3.3. We can express that there exists a cycle by

∃𝑥∃𝑦
(
𝐸 (𝑥,𝑦) ∧ ∃𝑧

(
conn1 (𝑧, 𝑥,𝑦) ∧ conn1 (𝑧,𝑦, 𝑥)

))
,

hence, that a graph is acyclic by the negation of that formula. We write𝜓𝑎𝑐𝑦𝑐𝑙𝑖𝑐 for that formula. We can express

that a graph is a tree by stating that it is connected and acyclic.

We can conveniently express deletion problems by relativizing formulas as follows. For a formula 𝜑 that

does not contain 𝑧 as a free variable write del(𝑧) [𝜑] for the formula obtained from 𝜑 by recursively replacing

every subformula ∃𝑥𝜓 by ∃𝑥 (𝑥 ≠ 𝑧 ∧𝜓), every subformula ∀𝑥𝜓 by ∀𝑥 (𝑥 ≠ 𝑧 → 𝜓) and every atomic formula

conn𝑘 (𝑥,𝑦, 𝑧1, . . . , 𝑧𝑘) by conn𝑘+1 (𝑥,𝑦, 𝑧1, . . . , 𝑧𝑘 , 𝑧). Then (𝔄, 𝑎) |= del(𝑧) [𝜑] if and only if (𝔄 − 𝑎(𝑧), 𝑎) |= 𝜑 ,
where 𝔄 − 𝑎(𝑧) denotes the substructure induced on the universe of 𝔄 without 𝑎(𝑧).

Example 3.4. We can state the existence of a feedback vertex set of size 𝑘 by

∃𝑧1del(𝑧1) [· · · [∃𝑧𝑘del(𝑧𝑘) [𝜓𝑎𝑐𝑦𝑐𝑙𝑖𝑐] . . .] .

We can of course use the same principle to express any Π-deletion problem that is FO + conn expressible.

We can also express that a formula 𝜑 holds in a connected component.

Example 3.5. We write comp(𝑥) for the connected component of (the valuation of) 𝑥 . For a formula 𝜑 we write

𝜑 [comp(𝑥)]
for the formula obtained from𝜑 by recursively replacing all subformulas∃𝑦𝜓 by∃𝑦 (conn0 (𝑥,𝑦)∧𝜓) and

all subformulas ∀𝑦𝜓 by ∀𝑦 (conn0 (𝑥,𝑦) → 𝜓). Then (𝔄, 𝑎) |= 𝜑 [comp(𝑥)]
if and only if (𝔄 [comp(𝑎(𝑥))], 𝑎) |= 𝜑 ,

where 𝔄 [comp(𝑎(𝑥))] denotes the substructure induced on the connected component of 𝑎(𝑥).

Using this relativization to connected components, we can also express many elimination distance problems.

Example 3.6. The elimination distance to a class C of graphs measures the number of recursive deletions of

vertices needed for a graph 𝐺 to become a member of C . More precisely, a graph 𝐺 has elimination distance 0

to C if 𝐺 ∈ C , and otherwise elimination distance at most 𝑘 + 1 if in every connected component of 𝐺 we can

delete a vertex such that the resulting graph has elimination distance at most 𝑘 to C . Elimination distance was

introduced by Bulian and Dawar [6] in their study of the parameterized complexity of the graph isomorphism

problem and has recently obtained much attention in the literature, see e.g. [1, 5, 19, 27, 28, 31].

Now assume C is a first-order definable class, say defined by a formula𝜓C . Then elimination distance 0 to C is

defined by ed0 = 𝜓C . If ed𝑘 has been defined, then we can express elimination distance 𝑘 + 1 to C by the formula

ed𝑘+1 B ed𝑘 ∨ ∀𝑥
(
∃𝑦 del(𝑦) [ed𝑘]

) [comp(𝑥)]
.

ACM Trans. Comput. Logic, Vol. 24, No. 4, Article 30. Publication date: July 2023.

30:6 • N. Schirrmacher, S. Siebertz and A. Vigny

Our final example concerns the expressive power of separator logic on finite words and finite trees. By the

classical result of Büchi [8], a language on words is regular if and only if it is definable in MSO. Here, words are

represented as finite structures over the vocabulary of the successor relation and unary predicates representing

the letters of the alphabet. When considering first-order logic on strings, it makes a big difference whether one

considers word structures over the successor relation or over its transitive closure, the order relation. Languages

definable by FO over the order relation are exactly the star-free languages (see e.g. [30, Theorem 7.26]), while

languages definable by FO over the successor relation are exactly the locally threshold testable languages [39,

Theorem 4.8]. Similarly, MSO on trees can define exactly the regular tree languages (defined via tree automata,

see [30, Theorem 7.30]), while FO can only define a proper subclass of the regular tree languages when the

ancestor-descendant or even only the parent-child relation is present. This background was also Bojańczyk’s

motivation, who studied a variant of star-free expressions for graphs and showed that these two formalisms for

defining graph languages are equivalent [3]. In our example, we show that separator logic on rooted trees has

exactly the same expressive power as first-order logic in the presence of the ancestor-descendant relation. Let

us write FO[<] for the latter logic. On the other hand, we treat a rooted tree as a graph-theoretic tree with an

additional unary predicate marking the root. In the degenerate case, we treat a word as a path, where one of the

endpoints is marked by a unary predicate as the smallest vertex (the beginning of the word).

Example 3.7. On rooted trees (and similarly on words) FO + conn collapses to FO + conn1 and has exactly

the same expressive power as FO[<] over trees with the ancestor-descendant relation. We show first that

conn𝑘 (𝑥,𝑦, 𝑧1, . . . , 𝑧𝑘) can be expressed in FO[<]. For this, we need to ensure that 𝑥 and 𝑦 are not equal to

any 𝑧𝑖 and that no 𝑧𝑖 lies on the unique path between 𝑥 and 𝑦 in the tree. We can define the vertices on

the unique path between 𝑥 and 𝑦 by first defining the least common ancestor of 𝑥 and 𝑦 by the formula

lca(𝑥,𝑦, 𝑧) = 𝑧 ≤ 𝑥 ∧ 𝑧 ≤ 𝑦 ∧ ¬∃𝑧′ (𝑧 < 𝑧′ ∧ 𝑧′ ≤ 𝑥 ∧ 𝑧′ ≤ 𝑦). If 𝑧 is the least common ancestor of 𝑥 and 𝑦, it

remains to state that none of the 𝑧𝑖 lies either between 𝑥 and 𝑧 or between 𝑦 and 𝑧, which is done by the formula

∃𝑧
(
lca(𝑥,𝑦, 𝑧) ∧ ∧

1≤𝑖≤𝑘 ¬(𝑧 ≤ 𝑧𝑖 ≤ 𝑥 ∨ 𝑧 ≤ 𝑧𝑖 ≤ 𝑦)
)
.

Conversely, we show that we can define with FO + conn1 the ancestor-descendant relation in rooted trees.

Assume the root is marked by the unary symbol 𝑅. Then 𝑥 < 𝑦 is equivalent to

∃𝑟
(
𝑅(𝑟) ∧ conn1 (𝑥, 𝑟,𝑦) ∧ ¬conn1 (𝑦, 𝑟, 𝑥)

)
.

3.2 The limits of separator logic
We now study the limits of separator logic and show that planarity cannot be expressed in FO + conn. Slightly

abusing notation, let us also write FO + conn𝑘 for the problems that are expressible in FO + conn𝑘 . We also show

that there is a strict hierarchy of expressiveness: FO + conn0 ⊊ FO + conn1 ⊊ FO + conn2 ⊊ . . . These results are
based on an adaptation of the standard Ehrenfeucht-Fraïssé game (EF game), which is commonly used in the

study of the expressive power of first-order logic.

Ehrenfeucht-Fraïssé Games. The Ehrenfeucht-Fraïssé game is played by two players called Spoiler and

Duplicator. Given two structures 𝔄 and 𝔅, Spoiler’s aim is to show that the structures can be distinguished by

first-order logic (with formulas of a given quantifier rank), while Duplicator wants to prove the opposite. The

𝑞-round EF game proceeds in 𝑞 rounds, where each round consists of the following two steps.

(1) Spoiler picks an element 𝑎 ∈ 𝔄 or an element 𝑏 ∈ 𝔅.

(2) Duplicator responds by picking an element of the other structure, that is, she picks a 𝑏 ∈ 𝔅 if Spoiler chose

𝑎 ∈ 𝔄, and she picks an 𝑎 ∈ 𝔄 if Spoiler chose 𝑏 ∈ 𝔅.

After 𝑞 rounds, the game stops. Assume the players have chosen 𝑎 = 𝑎1, . . . , 𝑎𝑞 and
¯𝑏 = 𝑏1, . . . , 𝑏𝑞 . Then

Duplicator wins if the mapping 𝑎𝑖 ↦→ 𝑏𝑖 for all 1 ≤ 𝑖 ≤ 𝑞 is a partial isomorphism of 𝔄 and 𝔅. We write for short

ACM Trans. Comput. Logic, Vol. 24, No. 4, Article 30. Publication date: July 2023.

First-Order Logic with Connectivity Operators • 30:7

𝑎 ↦→ ¯𝑏 for this mapping. Otherwise, Spoiler wins. We say that Duplicator wins the 𝑞-round EF game on 𝔄 and 𝔅

if she can force a win no matter how Spoiler plays. We then write 𝔄 ≃𝑞 𝔅.

Theorem 3.8 (Ehrenfeucht-Fraïssé, see e.g. [30, Theorem 3.18]). Let 𝔄 and𝔅 be two 𝜎-structures where 𝜎 is
purely relational. Then 𝔄 ≡𝑞 𝔅 if and only if 𝔄 ≃𝑞 𝔅.

As (FO + conn)𝜎 is defined as FO𝜎+conn, the EF game for FO naturally extends to separator logic. The (conn𝑘,𝑞)-
game is played just as the 𝑞-round EF game, where the winning condition is adapted as follows. If in 𝑞 rounds the

players have chosen 𝑎 = 𝑎1, . . . , 𝑎𝑞 and ¯𝑏 = 𝑏1, . . . , 𝑏𝑞 , then Duplicator wins if

(1) the mapping 𝑎 ↦→ ¯𝑏 is a partial isomorphism of 𝔄 and 𝔅, and

(2) for every ℓ ≤ 𝑘 and every sequence (𝑖1, . . . , 𝑖ℓ+2) of numbers in {1, . . . , 𝑞} we have

𝔄 |= connℓ (𝑎𝑖1 , . . . , 𝑎𝑖ℓ+2
) ⇐⇒ 𝔅 |= connℓ (𝑏𝑖1 , . . . , 𝑏𝑖ℓ+2

).

Otherwise, Spoiler wins. We say that Duplicator wins the (conn𝑘,𝑞)-game on 𝔄 and𝔅 if she can force a win no

matter how Spoiler plays. We then write 𝔄 ≃conn𝑘,𝑞
𝔅.

We obtain the following theorem.

Theorem 3.9. Let𝔄 and𝔅 be two 𝜎-structures where 𝜎 is purely rational (and contains a binary relation symbol 𝐸
that is interpreted on both structures as an irreflexive and symmetric relation). Then 𝔄 ≡conn𝑘,𝑞

𝔅 if and only if
𝔄 ≃conn𝑘,𝑞

𝔅.

The next theorem exemplifies the use of the (conn𝑘,𝑞)-game.

Theorem 3.10. Planarity is not expressible in FO + conn.

𝑣1,1 𝑣2,1

𝑣1,2 𝑣2,2

𝑣1,𝑛 𝑣2,𝑛

𝑔−3 𝑔−2

𝑔−1 𝑔0

(a) 𝐺𝑞

𝑣 ′
1,1 𝑣 ′

2,1

𝑣 ′
1,2 𝑣 ′

2,2

𝑣 ′
1,𝑛 𝑣 ′

2,𝑛

ℎ−3 ℎ−2

ℎ−1ℎ0

(b) 𝐻𝑞

Fig. 1. Planarity is not expressible in FO + conn.

ACM Trans. Comput. Logic, Vol. 24, No. 4, Article 30. Publication date: July 2023.

30:8 • N. Schirrmacher, S. Siebertz and A. Vigny

Proof. Assume planarity is expressible by a sentence 𝜑 of FO + conn𝑘 of quantifier rank 𝑞. Without loss of

generality, we may assume that 𝑘 ≤ 𝑞, as otherwise, we have repetitions in the conn𝑘 predicates that can be

avoided by using connℓ predicates for ℓ < 𝑘 . Let 𝐺𝑞 and 𝐻𝑞 be defined as shown in Figure 1, where 𝑛 = 2
𝑞+1

.

Then, 𝐺𝑞 is planar but 𝐻𝑞 contains 𝐾3,3 as a minor and hence is not planar (it embeds only in a surface of genus

one; the Möbius strip, which cannot be embedded into the plane). We show that 𝐺𝑞 ≃conn𝑘,𝑞
𝐻𝑞 , contradicting

the assumption that 𝜑 must distinguish 𝐺𝑞 and 𝐻𝑞 . In fact, we prove an even stronger statement by giving

Spoiler four free moves 𝑔−3 = 𝑣1,1, 𝑔−2 = 𝑣2,1, 𝑔−1 = 𝑣1,𝑛 and 𝑔0 = 𝑣2,𝑛 in 𝐺𝑞 where Duplicator responds with the

vertices ℎ−3 = 𝑣
′
1,1, ℎ−2 = 𝑣

′
2,1, ℎ−1 = 𝑣

′
2,𝑛 and ℎ0 = 𝑣

′
1,𝑛 in 𝐻𝑞 . Note the twist in the last two vertices. Even though

Duplicator’s answers are forced, she will be able to win the game and these extra moves will be helpful to define

Duplicator’s winning strategy.

We define the 𝑥-distance of two nodes 𝑣𝑖, 𝑗 and 𝑣𝑘,ℓ as dist𝑥 (𝑣𝑖, 𝑗 , 𝑣𝑘,ℓ) = |𝑖 − 𝑘 |, that is, the 𝑥-distance is 0 if the

vertices are in the same column and 1 if they are not, and the 𝑦-distance as dist𝑦 (𝑣𝑖, 𝑗 , 𝑣𝑘,ℓ) = | 𝑗 − ℓ |, that is, the
𝑦-distance is the number of rows between the vertices (minus 1). Note that the 𝑦-distance is not the distance in

the graphs, e.g. dist𝑦 (𝑔−3, 𝑔−1) = 2
𝑞+1 − 1, even though 𝑔−3 and 𝑔−1 are adjacent in 𝐺𝑞 .

Assume now that the first 𝑖 moves have been made in the game and the players have selected the vertices 𝑔 =

(𝑔−3, . . . , 𝑔0, 𝑔1, . . . , 𝑔𝑖) in𝐺𝑞 (where 𝑔1, . . . , 𝑔𝑖 were freely chosen by the players), and
¯ℎ = (ℎ−3, . . . , ℎ0, ℎ1, . . . , ℎ𝑖)

in 𝐻𝑞 (where ℎ1, . . . , ℎ𝑖 were freely chosen by the players). We prove by induction that Duplicator can play in

such a way that after round 𝑖 of the (conn𝑘,𝑞)-game the following conditions hold for all −3 ≤ 𝑗, ℓ ≤ 𝑖:
(1) if 𝑔 𝑗 = 𝑣𝑥,𝑦 , then ℎ 𝑗 = 𝑣 ′

𝑥 ′,𝑦 – that is, corresponding pebbles are in the same row, and in particular

dist𝑦 (𝑔 𝑗 , 𝑔ℓ) = dist𝑦 (ℎ 𝑗 , ℎℓ), and
(2) if dist𝑦 (𝑔 𝑗 , 𝑔ℓ) ≤ 2

𝑞−𝑖
, then dist𝑥 (𝑔 𝑗 , 𝑔ℓ) = dist𝑥 (ℎ 𝑗 , ℎℓ).

Before showing how Duplicator can maintain this invariant, we show that these conditions together with the

first four extra moves imply that the mapping 𝑔 ↦→ ¯ℎ is a partial isomorphism of 𝐺𝑞 and 𝐻𝑞 . The proof is similar

to the standard proof that distances larger than 2
𝑞
in graphs cannot be expressed by first-order formulas with 𝑞

quantifiers. Intuitively, the twist (the difference in indices between 𝑔−1, 𝑔0 and ℎ−1, ℎ0) cannot be detected in a

local neighborhood.

Let us show that also for every 0 ≤ ℓ ≤ 𝑘 and every sequence (𝑖1, . . . , 𝑖ℓ+2) of numbers in {−3, . . . , 𝑖} we have
𝐺𝑞 |= connℓ (𝑔𝑖1 , . . . , 𝑔𝑖ℓ+2

) if and only if 𝐻𝑞 |= connℓ (ℎ𝑖1 , . . . , ℎ𝑖ℓ+2
). Assume 𝐺𝑞 |= connℓ (𝑔𝑖1 , . . . , 𝑔𝑖ℓ+2

), that is, 𝑔𝑖1
and 𝑔𝑖2 are connected after the deletion of 𝑔𝑖3 , . . . , 𝑔𝑖ℓ+2

, say by a path 𝑃 = 𝑣𝑥1,𝑦1
. . . 𝑣𝑥𝑚,𝑦𝑚 , where 𝑣𝑥1,𝑦1

= 𝑔𝑖1 and

𝑣𝑥𝑚,𝑦𝑚 = 𝑔𝑖2 . Then there are no 𝑔𝑖 𝑗
1

= 𝑣𝑥,𝑦 and 𝑔𝑖 𝑗
2

= 𝑣𝑥 ′,𝑦′ (for 𝑗1, 𝑗2 ≥ 3) with 𝑦 = 𝑦′ = 𝑦𝑖 and 𝑥 ≠ 𝑥 ′ for some

2 ≤ 𝑖 ≤ 𝑚 − 1 (this would block a row along which the path goes, which is not possible) and no 𝑔𝑖 𝑗
1

= 𝑣𝑥,𝑦
and 𝑔𝑖 𝑗

2

= 𝑣𝑥 ′,𝑦′ (for 𝑗1, 𝑗2 ≥ 3) with 𝑦𝑖 = 𝑦 = 𝑦′ − 1 = 𝑦𝑖+1 − 1 and 𝑥 ≠ 𝑥 ′ for some 2 ≤ 𝑖 ≤ 𝑚 − 1 (this would

block a “diagonal” of which the path contains at least one vertex, which is not possible). By the first condition

of the invariant there are no ℎ𝑖 𝑗
1

= 𝑣𝑥,𝑦 and ℎ𝑖 𝑗
2

= 𝑣𝑥 ′,𝑦′ (for 𝑗1, 𝑗2 ≥ 3) with 𝑦 = 𝑦′ = 𝑦𝑖 and 𝑥 ≠ 𝑥 ′ for some

2 ≤ 𝑖 ≤ 𝑚 − 1 and by the second condition of the invariant there are no ℎ𝑖 𝑗
1

= 𝑣𝑥,𝑦 and ℎ𝑖 𝑗
2

= 𝑣𝑥 ′,𝑦′ (for 𝑗1, 𝑗2 ≥ 3)

with𝑦𝑖 = 𝑦 = 𝑦′−1 = 𝑦𝑖+1−1 and 𝑥 ≠ 𝑥 ′ for some 2 ≤ 𝑖 ≤ 𝑚−1. Now, if 𝑃 ′ = 𝑣 ′𝑥1,𝑦1

. . . 𝑣 ′𝑥𝑚,𝑦𝑚 is not a path from ℎ𝑖1
to ℎ𝑖2 after the deletion of ℎ𝑖3 , . . . , ℎ𝑖ℓ+2

, it is possible to reroute the path by switching the row appropriately,

as the ℎ𝑖 𝑗 never block a complete row or a diagonal, as shown above. The case 𝐻𝑞 |= connℓ (ℎ𝑖1 , . . . , ℎ𝑖ℓ+2
) is

symmetrical.

We now show that Duplicator can maintain the invariants (1) and (2) throughout the game. For the initial

configuration 𝑖 = 0, the conditions are obviously fulfilled for −3 ≤ 𝑗, ℓ ≤ 0. Corresponding pebbles are in the

same row and note that dist𝑦 (𝑔 𝑗 , 𝑔ℓ) = 2
𝑞+1 − 1, for 𝑗 ∈ {−3,−2} and ℓ ∈ {−1, 0} and analogously for ℎ 𝑗 and ℎℓ .

For the induction step, suppose that the conditions are fulfilled so far and that Spoiler is making his (𝑖 +1)-move

in 𝐺𝑞 (the case of 𝐻𝑞 is symmetrical). We may assume that Spoiler does not choose a vertex that was chosen

before, say Spoiler picks 𝑔𝑖+1 = 𝑣_,𝑎 . In order to fulfill the conditions on the partial isomorphism, Duplicator must

ACM Trans. Comput. Logic, Vol. 24, No. 4, Article 30. Publication date: July 2023.

First-Order Logic with Connectivity Operators • 30:9

choose ℎ𝑖+1 = 𝑣
′
_,𝑎 with the same 𝑦-coordinate. We have to make sure that she can choose the vertex with that

𝑦-coordinate satisfying the second condition. Let 𝑔 𝑗 = 𝑣_,𝑏 and 𝑔ℓ = 𝑣_,𝑐 with −3 ≤ 𝑗, ℓ ≤ 𝑖 be such that 𝑏 ≤ 𝑎 ≤ 𝑐
and there is no other 𝑔𝑘 = 𝑣_,𝑑 with 𝑏 < 𝑑 < 𝑐 . Intuitively, 𝑔 𝑗 is a lowest pebble that was placed above (or in the

same row as) 𝑔𝑖+1, while 𝑔𝑘 is a highest pebble that was placed below (or in the same row as) 𝑔𝑖+1.

There are two cases:

(1) dist𝑦 (𝑔 𝑗 , 𝑔ℓ) ≤ 2
𝑞−𝑖

: Then by hypothesis, dist𝑥 (ℎ 𝑗 , ℎℓ) = dist𝑥 (𝑔 𝑗 , 𝑔ℓ) and dist𝑦 (ℎ 𝑗 , ℎℓ) = dist𝑦 (𝑔 𝑗 , 𝑔ℓ).
Here, Duplicator chooses the unique ℎ𝑖+1 = 𝑣 ′

_,𝑎 such that dist𝑥 (ℎ 𝑗 , ℎ𝑖+1) = dist𝑥 (𝑔 𝑗 , 𝑔𝑖+1), and we have

dist𝑥 (ℎℓ , ℎ𝑖+1) = dist𝑥 (𝑔ℓ , 𝑔𝑖+1).
(2) dist𝑦 (𝑔 𝑗 , 𝑔ℓ) > 2

𝑞−𝑖
: Then dist𝑦 (ℎ 𝑗 , ℎℓ) > 2

𝑞−𝑖
and there are three possibilities:

• dist𝑦 (𝑔 𝑗 , 𝑔𝑖+1) ≤ 2
𝑞−(𝑖+1)

: Then dist𝑦 (𝑔ℓ , 𝑔𝑖+1) > 2
𝑞−(𝑖+1)

, and Duplicator chooses ℎ𝑖+1 = 𝑣 ′
_,𝑎 such that

dist𝑥 (ℎ 𝑗 , ℎ𝑖+1) = dist𝑥 (𝑔 𝑗 , 𝑔𝑖+1). Hence, dist𝑦 (ℎℓ , ℎ𝑖+1) > 2
𝑞−(𝑖+1)

.

• dist𝑦 (𝑔ℓ , 𝑔𝑖+1) ≤ 2
𝑞−(𝑖+1)

: Then dist𝑦 (𝑔 𝑗 , 𝑔𝑖+1) > 2
𝑞−(𝑖+1)

. Similarly to the previous case, Duplicator

chooses ℎ𝑖+1 = 𝑣
′
_,𝑎 such that dist𝑥 (ℎℓ , ℎ𝑖+1) = dist𝑥 (𝑔ℓ , 𝑔𝑖+1). Consequently, dist𝑦 (ℎ 𝑗 , ℎ𝑖+1) > 2

𝑞−(𝑖+1)
.

• dist𝑦 (𝑔 𝑗 , 𝑔𝑖+1) > 2
𝑞−(𝑖+1)

and dist𝑦 (𝑔ℓ , 𝑔𝑖+1) > 2
𝑞−(𝑖+1)

: Here, Duplicator can choose ℎ𝑖+1 = 𝑣 ′
1,𝑎 or

ℎ𝑖+1 = 𝑣
′
2,𝑎 as she wants. We get that dist𝑦 (ℎ 𝑗 , ℎ𝑖+1) ≥ 2

𝑞−(𝑖+1)
and dist𝑦 (ℎℓ , ℎ𝑖+1) ≥ 2

𝑞−(𝑖+1)
.

Thus, in all cases, the conditions are fulfilled, and Duplicator wins the (conn𝑘,𝑞)-game on 𝐺𝑞 and 𝐻𝑞 . Hence,

planarity is not definable in FO + conn. □

As a graph is planar if and only if it excludes 𝐾5 and 𝐾3,3 as (topological) minors, we conclude that FO + conn

cannot express containment of minors or topological minors. This motivates the definition of the stronger logic

FO + DP in the next section, which can express the existence of disjoint paths. We will show that FO + DP can be

used to express minor and topological minor containment in the next section. The disjoint paths problem gets as

input a graph𝐺 and vertices 𝑠1, 𝑡1, . . . , 𝑠𝑘 , 𝑡𝑘 ∈ 𝑉 (𝐺). The question is whether there are pairwise vertex disjoint

paths between 𝑠𝑖 and 𝑡𝑖 for 1 ≤ 𝑖 ≤ 𝑘 .

Corollary 3.11. The disjoint paths problem cannot be expressed in FO + conn.

The proof of the next theorem is deferred to the next section, as it is a consequence of the fact that the even

stronger logic FO + DP cannot express bipartiteness (Theorem 4.8).

Theorem 3.12. Bipartiteness cannot be expressed in FO + conn.

Finally, we show that the FO+conn𝑘 hierarchy is strict by proving that (𝑘 +2)-connectivity cannot be expressed
by FO + conn𝑘 . On the other hand, (𝑘 + 2)-connectivity can be expressed by FO + conn𝑘+1 (Example 3.2).

Theorem 3.13. (𝑘 + 2)-connectivity cannot be expressed by FO + conn𝑘 . In particular, the FO + conn𝑘 hierarchy
is strict, that is, FO + conn0 ⊊ FO + conn1 ⊊ . . .

Proof. Let 𝑘 be an integer. For every integer 𝑞, we choose two graphs 𝐺𝑞 and 𝐻𝑞 such that:

• 𝐺𝑞 is connected,
• 𝐻𝑞 is not connected, and
• 𝐺𝑞 ≃𝑞 𝐻𝑞 .

This is possible, as connectivity is not first-order definable, and ≃𝑞 has only finitely many equivalence classes

(as there are only finitely many FO[𝑞]-sentences over the signature of graphs). For example, we can choose𝐺𝑞 as

a cycle of length 2
𝑞+1

and𝐻𝑞 as the union of two disjoint cycles of length 2
𝑞
, see e.g. the example for Theorem 4.12

of [30].

Then, we define the graph 𝐺𝑘𝑞 (resp. 𝐻𝑘𝑞) as the disjoint union of 𝐺𝑞 (resp. 𝐻𝑞) and 𝐾𝑘+1, a clique of size 𝑘 + 1,

and connect the vertices of the clique with all vertices of 𝐺𝑞 (resp. 𝐻𝑞), that is, we add the additional edges such

ACM Trans. Comput. Logic, Vol. 24, No. 4, Article 30. Publication date: July 2023.

30:10 • N. Schirrmacher, S. Siebertz and A. Vigny

that (𝑥,𝑦) ∈ 𝐸 (𝐺𝑘𝑞) (resp. (𝑥,𝑦) ∈ 𝐸 (𝐻𝑘𝑞)) if 𝑥 ∈ 𝐺𝑞 (resp. 𝑥 ∈ 𝐻𝑞) and 𝑦 ∈ 𝐾𝑘+1. The graph𝐺
𝑘
𝑞 is (𝑘 + 2)-connected

(the deletion of any 𝑘 + 1 vertices cannot disconnect 𝐺𝑘𝑞), while 𝐻
𝑘
𝑞 is not (𝑘 + 2)-connected (the deletion of the

copy of 𝐾𝑘+1 disconnects 𝐻
𝑘
𝑞). Therefore, every conn𝑘 (𝑥,𝑦, 𝑧1, . . . , 𝑧𝑘) predicate can be expressed by an atomic

plain first-order formula: in both graphs (the valuations of) 𝑥 and 𝑦 are not connected after the deletion of (the

valuations of) 𝑧1, . . . , 𝑧𝑘 if and only if 𝑥 or 𝑦 is equal to one of the 𝑧𝑖 . Hence, to prove 𝐺𝑘𝑞 ≃conn𝑘,𝑞
𝐻𝑘𝑞 it suffices to

prove 𝐺𝑘𝑞 ≃𝑞 𝐻𝑘𝑞 to finish the proof.

Claim 3.14. For all integers 𝑞, 𝑘 we have 𝐺𝑘𝑞 ≃𝑞 𝐻𝑘𝑞 .

Proof. The following is obviously a winning strategy for Duplicator in the 𝑞-round EF game on𝐺𝑘𝑞 and 𝐻𝑘𝑞 . If

Spoiler plays a pebble in the subgraph 𝐺𝑞 or 𝐻𝑞 , Duplicator can respond by a pebble in the subgraph 𝐻𝑞 or 𝐺𝑞
according to the winning strategy of Duplicator in the EF game on𝐺𝑞 and 𝐻𝑞 . Otherwise, if Spoiler picks a pebble

in the subgraph 𝐾𝑘+1 of𝐺
𝑘
𝑞 or 𝐻𝑘𝑞 , Duplicator can respond by a pebble in the subgraph 𝐾𝑘+1 of the other graph 𝐻

𝑘
𝑞

or 𝐺𝑘𝑞 . □

This concludes the proof of Theorem 3.13. □

4 DISJOINT-PATHS LOGIC
In this section, we study the expressive power of disjoint-paths logic FO + DP. We again fix a signature 𝜎 that does

not contain the symbol disjoint-paths𝑘 for any 𝑘 ≥ 1 and that does contain a binary (edge) relation symbol 𝐸. The

disjoint paths predicates will always refer to this relation.We let 𝜎+disjoint-paths B 𝜎∪{disjoint-paths𝑘 : 𝑘 ≥ 1},
where each symbol disjoint-paths𝑘 is a 2𝑘-ary relation symbol.

Definition 4.1. The formulas of (FO + DP)𝜎 are the formulas of FO𝜎+disjoint-paths. We usually simply write

FO + DP, when 𝜎 is understood from the context.

For a 𝜎-structure 𝔄, an assignment 𝑎 and an FO + DP formula 𝜑 (𝑥), we define the satisfaction relation

(𝔄, 𝑎) |= 𝜑 (𝑥) as for first-order logic, where an atomic predicate disjoint-paths𝑘 [(𝑥1, 𝑦1), . . . (𝑥𝑘 , 𝑦𝑘)] is evaluated
as follows. Assume that the universe of 𝔄 is 𝐴 and let 𝐺 = (𝐴, 𝐸𝔄) be the graph on vertex set 𝐴 and edge set 𝐸𝔄 .

Then (𝔄, 𝑎) models disjoint-paths𝑘 [(𝑥1, 𝑦1), . . . , (𝑥𝑘 , 𝑦𝑘)] if and only if in𝐺 there exist 𝑘 internally vertex-disjoint

paths 𝑃1, . . . , 𝑃𝑘 , where 𝑃𝑖 connects 𝑎(𝑥𝑖) and 𝑎(𝑦𝑖).

We write FO + DP𝑘 for the fragment of FO + DP that uses only disjoint-pathsℓ predicates for ℓ ≤ 𝑘 . The

quantifier rank of an FO + DP formula is defined as for plain first-order logic. For structures 𝔄 with universe

𝐴 and 𝑎 ∈ 𝐴𝑚 and 𝔅 with universe 𝐵 and
¯𝑏 ∈ 𝐵𝑚 , we write (𝔄, 𝑎) ≡DP (𝔅, ¯𝑏) if (𝔄, 𝑎) and (𝔅, ¯𝑏) satisfy the

same FO + DP formulas, that is, for all 𝜑 (𝑥) ∈ FO + DP we have 𝔄 |= 𝜑 (𝑎) ⇔ 𝔅 |= 𝜑 (¯𝑏). Similarly, we write

(𝔄, 𝑎) ≡DP𝑘
(𝔅, ¯𝑏) and (𝔄, 𝑎) ≡DP𝑘,𝑞

(𝔅, ¯𝑏) if (𝔄, 𝑎) and (𝔅, ¯𝑏) satisfy the same FO + DP𝑘 formulas and the same

FO + DP𝑘 formulas of quantifier rank at most 𝑞, respectively.

4.1 Expressive power of disjoint-paths logic
We now study the expressive power of disjoint-paths logic.

Observation 4.2. FO + conn ⊆ FO + DP because conn𝑘 (𝑥,𝑦, 𝑧1, . . . , 𝑧𝑘) is equivalent to

disjoint-paths𝑘+1
[(𝑥,𝑦), (𝑧1, 𝑧1), . . . , (𝑧𝑘 , 𝑧𝑘)] ∧

∧
𝑖≤𝑘

(𝑧𝑖 ≠ 𝑥 ∧ 𝑧𝑖 ≠ 𝑦).

Moreover, the inclusion is strict because planarity (Theorem 3.10) and hence, the disjoint paths problem

(Corollary 3.11) is not expressible in FO + conn, while planarity and in fact the problem that a graph contains a

fixed (topological) minor can be expressed in FO + DP.

ACM Trans. Comput. Logic, Vol. 24, No. 4, Article 30. Publication date: July 2023.

First-Order Logic with Connectivity Operators • 30:11

Example 4.3. For every fixed graph 𝐻 , there is an FO + DP formula 𝜑
𝑡𝑜𝑝

𝐻
such that 𝐺 |= 𝜑

𝑡𝑜𝑝

𝐻
if and only if

𝐻 ≼𝑡𝑜𝑝 𝐺 .
Let 𝑛,𝑚, ℓ respectively be the number of vertices, edges, and isolated vertices in 𝐻 . Let 𝑥1, . . . 𝑥𝑛 be 𝑛 variables.

Let 𝑒1, . . . , 𝑒𝑚 be the list of edges of 𝐻 , and let 𝑣 𝑗𝑠 and 𝑣 𝑗𝑡 be the two endpoints of 𝑒 𝑗 . Finally, let 𝑣𝑖1 , . . . , 𝑣𝑖ℓ be the

isolated vertices of 𝐻 . Then,

𝜑
𝑡𝑜𝑝

𝐻
:= ∃𝑥1, . . . 𝑥𝑛

(∧
𝑖≠𝑗

𝑥𝑖 ≠ 𝑥 𝑗 ∧ disjoint-paths𝑚+ℓ [(𝑥𝑒1𝑠
, 𝑥𝑒1𝑡

), . . . (𝑥𝑒𝑚𝑠
, 𝑥𝑒𝑚𝑡

), (𝑥𝑖1 , 𝑥𝑖1), . . . (𝑥𝑖ℓ , 𝑥𝑖ℓ)]
)
.

Example 4.4. For every fixed graph 𝐻 , there is an FO + DP formula 𝜑𝐻 such that 𝐺 |= 𝜑𝐻 if and only if 𝐻 ≼ 𝐺 .
This is because, for every graph 𝐻 , there exists a finite family of graphs 𝐻1, . . . , 𝐻ℓ such that 𝐻 ≼ 𝐺 if and only if

there is an 𝑖 ≤ ℓ such that 𝐻𝑖 ≼
𝑡𝑜𝑝 𝐺 . This family can be obtained by considering all possibilities of replacing

every branch set representing a vertex of 𝐻 of degree 𝑑 ≥ 3 with a tree with at most 𝑑 leaves and hardcoding

their shapes by disjoint paths.

Example 4.5. Planarity can be expressed in FO + DP. This is a corollary of the previous example, using the

formula 𝜑𝑝𝑙𝑎𝑛𝑎𝑟 := ¬𝜑𝐾5
∧ ¬𝜑𝐾3,3

.

Example 4.6. A graph has treewidth 1 if it is a tree or a forest, hence an acyclic graph. We can express acyclicity

in FO + conn (see Example 3.3).

A graph has treewidth 2 if every biconnected component is series-parallel. Series-parallel graphs exclude 𝐾4

as a minor: 𝜑𝑡𝑤2 := ¬𝜑𝐾4
. In general, we can express treewidth at most 𝑘 , 𝑘 ∈ N, because it can be defined by a

finite set of forbidden minors [34].

4.2 The limits of disjoint-paths logic
We now study the limits of disjoint-paths logic and show that bipartiteness cannot be expressed in FO + DP. We

also show that the hierarchy on (FO + DP𝑘)𝑘≥1 is strict. These results are based again on an adaptation of the

standard Ehrenfeucht-Fraïssé game.

The (DP𝑘,𝑞)-game is played just as the 𝑞-round EF game, but the winning condition is adapted as follows. If in

𝑞 rounds the players have chosen 𝑎 = 𝑎1, . . . , 𝑎𝑞 and ¯𝑏 = 𝑏1, . . . , 𝑏𝑞 , then Duplicator wins if

(1) the mapping 𝑎 ↦→ ¯𝑏 is a partial isomorphism of 𝔄 and 𝔅, and

(2) for every ℓ ≤ 𝑘 and every sequence (𝑖1, . . . , 𝑖2ℓ) of numbers in {1, . . . , 𝑞} we have

𝔄 |= disjoint-pathsℓ [(𝑎𝑖1 , 𝑎𝑖2), . . . , (𝑎𝑖2ℓ−1
, 𝑎𝑖2ℓ)] ⇐⇒ 𝔅 |= disjoint-pathsℓ [(𝑏𝑖1 , 𝑏𝑖2), . . . , (𝑏𝑖2ℓ−1

, 𝑏𝑖2ℓ)] .

Otherwise, Spoiler wins. We say that Duplicator wins the (DP𝑘,𝑞)-game on 𝔄 and 𝔅 if she can force a win no

matter how Spoiler plays. We then write 𝔄 ≃DP𝑘,𝑞
𝔅.

As (FO + DP)𝜎 is defined as FO𝜎+disjoint-paths we obtain the following theorem.

Theorem 4.7. Let𝔄 and𝔅 be two 𝜎-structures where 𝜎 is purely rational (and contains a binary relation symbol 𝐸
that is interpreted on both structures as an irreflexive and symmetric relation). Then 𝔄 ≡DP𝑘,𝑞

𝔅 if and only if
𝔄 ≃DP𝑘,𝑞

𝔅.

Theorem 4.8. Bipartiteness is not definable in FO + DP.

Proof. Let 𝑞 be an integer, and let𝐺 be a cycle graph with 2
𝑞
vertices and 𝐻 a cycle graph with 2

𝑞 + 1 vertices.

Then,𝐺 is bipartite because it has an even number of vertices, and𝐻 is not bipartite because it has an odd number

of vertices. We want to show that 𝐺 ≃DP𝑘,𝑞
𝐻 by induction over 𝑞.

We define the distance dist(𝑥,𝑦) of two vertices 𝑥 and 𝑦 as the length of the shortest path between 𝑥 and 𝑦.

ACM Trans. Comput. Logic, Vol. 24, No. 4, Article 30. Publication date: July 2023.

30:12 • N. Schirrmacher, S. Siebertz and A. Vigny

Let 𝑔 = (𝑔1, . . . , 𝑔𝑖) be the first 𝑖 moves in 𝐺 and similarly
¯ℎ = (ℎ1, . . . , ℎ𝑖) the first 𝑖 moves in 𝐻 . We can

prove by induction that Duplicator can play in such a way that after round 𝑖 of the (DP𝑘,𝑞)-game the following

conditions hold for all 𝑗, ℓ ≤ 𝑖:
(1) If dist(𝑔 𝑗 , 𝑔ℓ) < 2

𝑞−𝑖+1
, then dist(𝑔 𝑗 , 𝑔ℓ) = dist(ℎ 𝑗 , ℎℓ).

(2) If dist(𝑔 𝑗 , 𝑔ℓ) ≥ 2
𝑞−𝑖+1

, then dist(ℎ 𝑗 , ℎℓ) ≥ 2
𝑞−𝑖+1

.

(3) The selected vertices in 𝐺 and 𝐻 have the same “circular order”.

By the first two conditions, the partial isomorphism 𝑔 ↦→ ¯ℎ can be ensured. Furthermore, the third condition

implies that the second condition for Duplicator’s win is also satisfied.

The base case 𝑖 = 1 of the induction is trivial because dist(𝑔1, 𝑔1) = dist(ℎ1, ℎ1) = 0.

For the induction step, suppose that 𝐺 ≃DP𝑘,𝑖
𝐻 holds and Spoiler is making his (𝑖 + 1)-st move in G. The case

of 𝐻 is equivalent.

If Spoiler picks 𝑔 𝑗 for some 𝑗 ≤ 𝑖 , a vertex that has already been chosen before, Duplicator can choose ℎ 𝑗 , and

the conditions are fulfilled by the induction hypothesis. Otherwise, Spoiler picks a vertex 𝑔𝑖+1 that has not been

chosen before. Now we have to differentiate two cases:

(1) There is only one other vertex that has already been played, 𝑔 𝑗 = 𝑔1, 𝑗 ≤ 𝑖 . Then, we can find ℎ𝑖+1 such that

dist(ℎ1, ℎ𝑖+1) = dist(𝑔1, 𝑔𝑖+1).
(2) 𝑔𝑖+1 lies on the shortest path between 𝑔 𝑗 and 𝑔ℓ with 𝑗, ℓ ≤ 𝑖 such that there is no other 𝑔𝑛, 𝑛 ≤ 𝑖 that lies

on this path. Then, there are two possibilities:

• dist(𝑔 𝑗 , 𝑔ℓ) < 2
𝑞−𝑖+1

: Then dist(ℎ 𝑗 , ℎℓ) < 2
𝑞−𝑖+1

and we can find ℎ𝑖+1 on the shortest path between ℎ 𝑗 and

ℎℓ such that dist(ℎ 𝑗 , ℎ𝑖+1) = dist(𝑔 𝑗 , 𝑔𝑖+1) and dist(ℎ𝑖+1, ℎℓ) = dist(𝑔𝑖+1, 𝑔ℓ).
• dist(𝑔 𝑗 , 𝑔ℓ) ≥ 2

𝑞−𝑖+1
: Then dist(ℎ 𝑗 , ℎℓ) ≥ 2

𝑞−𝑖+1
and there are three cases:

(a) dist(𝑔 𝑗 , 𝑔𝑖+1) < 2
𝑞−𝑖

: Then dist(𝑔𝑖+1, 𝑔ℓ) ≥ 2
𝑞−𝑖

and we can choose ℎ𝑖+1 on the shortest path between

ℎ 𝑗 and ℎℓ such that dist(ℎ 𝑗 , ℎ𝑖+1) = dist(𝑔 𝑗 , 𝑔𝑖+1) and dist(ℎ𝑖+1, ℎℓ) ≥ 2
𝑞−𝑖

.

(b) dist(𝑔𝑖+1, 𝑔ℓ) < 2
𝑞−𝑖

: This case is similar to the previous one.

(c) dist(𝑔 𝑗 , 𝑔𝑖+1) ≥ 2
𝑞−𝑖

and dist(𝑔𝑖+1, 𝑔ℓ) ≥ 2
𝑞−𝑖

: Since dist(ℎ 𝑗 , ℎℓ) ≥ 2
𝑞−𝑖+1

, we can find ℎ𝑖+1 with

dist(ℎ 𝑗 , ℎ𝑖+1) ≥ 2
𝑞−𝑖

and dist(ℎ𝑖+1, ℎℓ) ≥ 2
𝑞−𝑖

in the middle of the shortest path between ℎ 𝑗 and

ℎℓ .

Thus, in all cases, the conditions are fulfilled. This completes the inductive proof. □

We now show that the hierarchy on (FO + DP𝑘)𝑘≥1 is strict.

Lemma 4.9. For all integers 𝑘 ≥ 1, (2𝑘)-connectivity is not expressible in FO + DP𝑘 .

Proof. Let 𝑘 be an integer. For every integer 𝑞, we define two graphs 𝐺𝑞 and 𝐻𝑞 such that:

• 𝐺𝑞 is 2-connected,

• 𝐻𝑞 is 1-connected but not 2-connected, and

• 𝐺𝑞 ≃𝑞 𝐻𝑞
For example, take 𝐺𝑞 the cycle with 2

𝑞+1
many elements, together with an apex vertex, while 𝐻𝑞 is the disjoint

union of two cycles with 2
𝑞
many elements each, together with an apex vertex (see Figure 2).

Obviously, 𝐺𝑞 is 2-connected and 𝐻𝑞 is 1-connected but not 2-connected. To show that 𝐺𝑞 and 𝐻𝑞 are FO[𝑞]-
equivalent, we can play the EF-game in the same way as for connectivity on a cycle and a disjoint union of two

cycles with the only difference that Duplicator chooses the apex vertex of the other graph whenever Spoiler

chooses the apex vertex of one graph in his move.

We then define 𝐺𝑘𝑞 (resp. 𝐻𝑘𝑞) as the lexicographical product of 𝐺𝑞 (resp. 𝐻𝑞) with 𝐾2𝑘 , the clique with 2𝑘

elements. More precisely, if 𝐺𝑞 = (𝑉 , 𝐸), where 𝑉 = {1, . . . , 𝑛}, then 𝐺𝑘𝑞 := (𝑉 ′, 𝐸′) where:
• 𝑉 ′

:= {𝑣1,1, . . . , 𝑣1,2𝑘 , . . . , 𝑣𝑛,1, . . . , 𝑣𝑛,2𝑘 }

ACM Trans. Comput. Logic, Vol. 24, No. 4, Article 30. Publication date: July 2023.

First-Order Logic with Connectivity Operators • 30:13

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

𝑣
2
𝑞+1

𝑣0

(a) 𝐺𝑞

𝑣 ′
1

𝑣 ′
2

𝑣 ′
3

𝑣 ′
2
𝑞

𝑣 ′
2
𝑞+1

𝑣 ′
2
𝑞+2

𝑣 ′
2
𝑞+3

𝑣 ′
2
𝑞+1

𝑣 ′
0

(b) 𝐻𝑞

Fig. 2. The FO + DP hierarchy is strict

• 𝐸′ := {{𝑣𝑖, 𝑗 , 𝑣𝑖′, 𝑗 ′ } : 𝑖 = 𝑖′ ∨ (𝑖, 𝑖′) ∈ 𝐸}.
One can view 𝐺𝑘𝑞 as 2𝑘 copies of 𝐺𝑞 on top of each other. Vertices are replaced by 2𝑘-cliques, and edges are

replaced by (2𝑘, 2𝑘)-bicliques. A direct consequence of the definition is the following equivalence.

Claim 4.10. For all integers 𝑞, 𝑘 , we have that 𝐺𝑘𝑞 ≃𝑞 𝐻𝑘𝑞 .

Proof. Duplicator’s strategy follows the one derived from 𝐺𝑞 ≃𝑞 𝐻𝑞 . If Spoiler picks a vertex 𝑣𝑖, 𝑗 ∈ 𝐺𝑘𝑞 , then
Duplicator can respond by choosing the vertex 𝑣𝑖′, 𝑗 ∈ 𝐻𝑘𝑞 where 𝑣𝑖′ ∈ 𝐻𝑞 is Duplicator’s response to 𝑣𝑖 ∈ 𝐺𝑞 . □

We then show that over𝐺𝑘𝑞 and 𝐻𝑘𝑞 , the predicate disjoint-paths𝑘 [] is always true and therefore that, for these
structures, (FO + DP𝑘) [𝑞] collapses to FO[𝑞].

Claim 4.11. For all integers 𝑞, 𝑘 , for every 𝑘-tuples 𝑎, ¯𝑏, we have that 𝐺𝑘𝑞 and 𝐻𝑘𝑞 both satisfy the query
disjoint-paths𝑘 [(𝑎1, 𝑏1), . . . , (𝑎𝑘 , 𝑏𝑘)].

Proof. The proofs for 𝐺𝑘𝑞 and 𝐻𝑘𝑞 are identical, so we only do it for 𝐺𝑘𝑞 . Remember that 𝑛 is the number of

vertices in𝐺𝑞 . The idea is that each of the 𝑘 paths uses at most two “copies” of each vertex of𝐺𝑞 , hence 2𝑘 “copies”

is enough for all paths to exist. For every 𝑖 ≤ 𝑛, let 𝐵𝑖 := {𝑣𝑖, 𝑗 : 𝑗 ≤ 2𝑘}, and 𝐹𝑖 := {𝑣𝑖, 𝑗 : 𝑗 ≤ 2𝑘∧𝑣𝑖, 𝑗 ∉ 𝑎∧𝑣𝑖, 𝑗 ∉ ¯𝑏}.
We call 𝐵𝑖 the set of vertices in position 𝑖 , and 𝐹𝑖 the free vertices in position 𝑖 . We then compute each path, starting

with (𝑎1, 𝑏1).
Let 𝑖, 𝑗, 𝑖′, 𝑗 ′ such that 𝑎1 = 𝑣𝑖, 𝑗 and 𝑏1 = 𝑣𝑖′, 𝑗 ′ . If 𝑖 = 𝑖

′
, then there is nothing to do as 𝑎1 and 𝑏1 are neighbors.

Otherwise, note that for every 𝑖′′ ≤ 𝑛, 𝐹𝑖′′ ≠ ∅, because there are only 2𝑘 − 2 elements among 𝑎2, . . . , 𝑎𝑘 , 𝑏2, . . . , 𝑏𝑘 .

Since 𝐺𝑞 is a connected graph, there is a path from 𝑖 to 𝑖′. For every inner node 𝑖′′ of this path, we can select a

vertex 𝑣 ∈ 𝐹𝑖′′ . We can therefore create a path in 𝐺𝑘𝑞 from 𝑎1 to 𝑏1 where all inner vertices are free vertices. We

then remove these vertices from the sets of free vertices.

Let now 1 < ℓ ≤ 𝑘 , and let 𝑖, 𝑗, 𝑖′, 𝑗 ′ such that 𝑎ℓ = 𝑣𝑖, 𝑗 and 𝑏ℓ = 𝑣𝑖′, 𝑗 ′ . We assume that the first ℓ − 1 paths have

already been computed. Observe that here again, if 𝑖 = 𝑖′ there is nothing to do. Otherwise, we again have that

for every 𝑖′′, 𝐹𝑖′′ is not empty. This is because for every 𝑠 ≤ 𝑘 , the path from 𝑎𝑠 to 𝑏𝑠 intersects 𝐵𝑖′′ at most twice

(at most once for the inner vertices, and twice when the two endpoints are both in position 𝑖′′). Therefore, we can select a path

in 𝐺𝑞 from 𝑖 to 𝑖′ and for each 𝑖′′ in this path, pick a vertex 𝑣 ∈ 𝐹𝑖′′ . □

With Claim 4.11, we can replace formulas of (FO + DP𝑘) [𝑞] by formulas of FO[𝑞]. Thanks to Claim 4.10,

𝐺𝑘𝑞 ≃𝑞 𝐻𝑘𝑞 , we conclude that𝐺𝑘𝑞 ≃DP𝑘,𝑞
𝐻𝑘𝑞 . So FO + DP𝑘 cannot express 2𝑘-connectivity. Note that this bound is

tight for these structures i.e. 𝐺𝑘𝑞 ;DP𝑘+1,𝑞
𝐻𝑘𝑞 . □

ACM Trans. Comput. Logic, Vol. 24, No. 4, Article 30. Publication date: July 2023.

30:14 • N. Schirrmacher, S. Siebertz and A. Vigny

Since 2𝑘-connectivity is expressible in FO + conn2𝑘−1 (see Example 3.2) but the disjoint paths problem is not

expressible in FO + conn (see Corollary 3.11), we can conclude the following corollary.

Corollary 4.12. FO + DP𝑘 and FO + conn2𝑘−1 are not comparable for 𝑘 ≥ 2.

We believe that FO + DP𝑘 cannot express (𝑘 + 1)-connectivity and hence, also FO + DP𝑘 and FO + conn𝑘 are

not comparable for 𝑘 ≥ 2.

Conjecture 4.13. FO + DP𝑘 and FO + conn𝑘 are not comparable for 𝑘 ≥ 2.

Lemma 4.14. The FO + DP𝑘 hierarchy is strict, that is, FO + DP1 ⊊ FO + DP2 ⊊ . . .

Proof. Consider the structures in the proof of Lemma 4.9, which are indistinguishable in FO + DP𝑘 . The

following sentence of FO + DP𝑘+1 distinguishes 𝐺
𝑘
𝑞 and 𝐻𝑘𝑞 :

∃𝑎1∃𝑏1 . . . ∃𝑎𝑘+1∃𝑏𝑘+1 ¬disjoint-paths𝑘+1
[(𝑎1, 𝑏1), . . . , (𝑎𝑘+1, 𝑏𝑘+1)]

In 𝐻𝑘𝑞 , pick the vertex 𝑖 such that the induced subgraph 𝐻𝑞 \ {𝑖} is not connected. Let 𝑖′, 𝑖′′ ∈ 𝑉 (𝐻𝑞) be two
vertices that are not connected in 𝐻𝑞 \ {𝑖}. Then pick the vertices 𝑎 𝑗 = 𝑣𝑖, 𝑗 for 𝑗 ≤ 𝑘 and 𝑏 𝑗 = 𝑣𝑖,𝑘+𝑗 for 𝑗 ≤ 𝑘 , as
well as 𝑎𝑘+1 = 𝑣𝑖′,1 and 𝑏𝑘+1 = 𝑣𝑖′′,1.

Intuitively, this means that the path between 𝑎𝑘+1 = 𝑣𝑖′,1 and 𝑏𝑘+1 = 𝑣𝑖′′,1 needs to traverse at least one of the

vertices 𝑣𝑖,_ because the vertices 𝑣𝑖′,_ and 𝑣𝑖′′,_ are not connected in 𝐻𝑘𝑞 \ ⋃
𝑗≤2𝑘 {𝑣𝑖, 𝑗 }. However, the path between

𝑎𝑘+1 = 𝑣𝑖′,1 and 𝑏𝑘+1 = 𝑣𝑖′′,1 also has to be internally vertex-disjoint to the paths between 𝑎 𝑗 = 𝑣𝑖, 𝑗 and 𝑏 𝑗 = 𝑣𝑖,𝑘+𝑗
for 𝑗 ≤ 𝑘 whose endpoints are all vertices 𝑣𝑖,_. Therefore, there are no 𝑘 + 1 disjoint path between the 𝑎 𝑗 ’s and

𝑏 𝑗 ’s and the FO + DP𝑘+1-sentence ∃𝑎1∃𝑏1 . . . ∃𝑎𝑘+1∃𝑏𝑘+1 ¬disjoint-paths𝑘+1
[(𝑎1, 𝑏1), . . . , (𝑎𝑘+1, 𝑏𝑘+1)] is satisfied

in 𝐻𝑘𝑞 .

𝐺𝑘𝑞 does not satisfy this FO + DP𝑘+1-formula because there is no vertex 𝑖 ∈ 𝑉 (𝐺𝑞) such that the induced

subgraph𝐺𝑞 \ {𝑖} is not connected. Instead, we can find 𝑘 +1 disjoint paths for all given pairs of vertices in𝐺𝑘𝑞 . □

4.3 Equivalent operators
It seems natural to consider other operators that can express the presence or exclusion of a minor or topological

minor. Consider the following operators.

(1) minor(𝑥1, . . . , 𝑥𝑘 , 𝐻), expressing that 𝐺 contains 𝐻 as a minor with branch sets 𝐻1, . . . , 𝐻𝑘 ⊆ 𝐺 such that

𝑥𝑖 ∈ 𝑉 (𝐻𝑖).
(2) top-minor(𝑥1, . . . , 𝑥𝑘 , 𝐻), expressing that 𝐺 contains 𝐻 as a topological minor with principal vertices

𝑥𝑖 ∈ 𝑉 (𝐻𝑖), where 𝐻 is an ordered graph such that the vertices 𝑥𝑖 are uniquely associated to the vertices

of 𝐻 .

Observation 4.15. Disjoint-paths logic, minor logic, and topological-minor logic have the same expressive

power.

Proof. Disjoint-paths logic can express the presence of a minor or topological minor (Examples 4.3 and 4.4).

Both minor and topological-minor logic can express disjoint paths: disjoint-paths𝑘 [(𝑥1, 𝑦1), . . . (𝑥𝑘 , 𝑦𝑘)] is equiv-
alent to minor(𝑥1, 𝑦1, . . . , 𝑥𝑘 , 𝑦𝑘 , 𝑀𝑘), where 𝑀𝑘 is a graph on vertex set 𝑥1, 𝑦1, . . . , 𝑥𝑘 , 𝑦𝑘 inducing a matching

between the 𝑥𝑖 and 𝑦𝑖 .

□

It will be interesting to study a variation of minor logic where we adapt the minor operator such that

minor(𝑥1, . . . , 𝑥𝑘 , 𝐻) expresses that 𝐺 contains 𝐻 as a minor after the deletion of 𝑥1, . . . , 𝑥𝑘 (not specifying

the vertices that must be contained in the branch sets).

ACM Trans. Comput. Logic, Vol. 24, No. 4, Article 30. Publication date: July 2023.

First-Order Logic with Connectivity Operators • 30:15

A second variation is the minor(𝑦, 𝑥1, . . . , 𝑥𝑘 , 𝐻) operator, expressing that after the deletion of 𝑥1, . . . , 𝑥𝑘 , 𝐺

contains 𝐻 as a minor in the component of 𝑦.

5 CONNECTION TO OTHER LOGICS
In this section, we compare the expressive power of separator logic and disjoint-paths logic with monadic

second-order logic and transitive-closure logic. Figure 5 depicts the connections between these logics.

5.1 Monadic second-order logic
Monadic second-order logic (MSO1) allows quantification over sets of vertices in addition to the first-order

quantifiers. It has a higher expressive power than first-order logic because, for example, connectivity is expressible

in MSO1. Connectivity is expressible by

∀𝑅
((
∃𝑥𝑅(𝑥) ∧ ∃𝑥¬𝑅(𝑥)

)
→ ∃𝑥∃𝑦

(
𝑅(𝑥) ∧ ¬𝑅(𝑦) ∧ 𝐸 (𝑥,𝑦)

))
By an extension of this formula, we can say that a given set 𝑆 is connected:

conn-set(𝑆) := ∀𝑅
((
𝑅 ⊆ 𝑆 ∧ ∃𝑥 𝑅(𝑥) ∧ ∃𝑥 (𝑆 (𝑥) ∧ ¬𝑅(𝑥))

)
→ ∃𝑥∃𝑦

(
𝑅(𝑥) ∧ ¬𝑅(𝑦) ∧ 𝑆 (𝑦) ∧ 𝐸 (𝑥,𝑦)

))
Furthermore, we can express the connectivity operators in MSO1. The connectivity operator conn0 (𝑥,𝑦) can

be expressed by:

conn0 (𝑥,𝑦) := ∀𝑅
(
𝑅(𝑥) ∧ ∀𝑣∀𝑤

(
(𝑅(𝑣) ∧ 𝐸 (𝑣,𝑤)) → 𝑅(𝑤)

)
→ 𝑅(𝑦)

)
and conn𝑘 (𝑥,𝑦, 𝑧1, . . . , 𝑧𝑘) using conn-set(𝑆) by:

conn𝑘 (𝑥,𝑦, 𝑧1, . . . , 𝑧𝑘) := ∃𝑆
(
conn-set(𝑆) ∧ 𝑆 (𝑥) ∧ 𝑆 (𝑦) ∧

∧
𝑖≤𝑘

¬𝑆 (𝑧𝑖)
)
.

We can express the disjoint paths predicates disjoint-paths𝑘 [(𝑥1, 𝑦1), . . . , (𝑥𝑘 , 𝑦𝑘)] by:

∃𝑆1 . . . ∃𝑆𝑘
(∧
𝑖≤𝑘

(
𝑆𝑖 (𝑥𝑖) ∧ 𝑆𝑖 (𝑦𝑖) ∧ conn-set(𝑆𝑖)

)
∧

∧
𝑖< 𝑗≤𝑘

∀𝑧
((
𝑆𝑖 (𝑧) ∧ 𝑆 𝑗 (𝑧)

)
→

(
(𝑧 = 𝑥𝑖 ∨ 𝑧 = 𝑦𝑖) ∧ (𝑧 = 𝑥 𝑗 ∨ 𝑧 = 𝑦 𝑗)

)))
Since the disjoint paths operators are expressible in MSO1, FO + DP is included in MSO1. This inclusion is

strict because it is well-known that bipartiteness is expressible in MSO1:

∃𝑅1∃𝑅2

(
∀𝑥

(
𝑅1 (𝑥) ↔ ¬𝑅2 (𝑥)

)
∧

∧
𝑖≤2

∀𝑥∀𝑦
(
(𝑅𝑖 (𝑥) ∧ 𝑅𝑖 (𝑦)) → ¬𝐸 (𝑥,𝑦)

))
but we showed in Theorem 4.8 that bipartiteness is not expressible in FO + DP.

5.2 Transitive-closure logic
Transitive-closure logicTC

𝑖
𝑗 is the enrichment of first-order logicwith the transitive-closure operator [TC𝑥,𝑦𝜑 (𝑥,𝑦)]

where𝑥 and𝑦 are tuples of length 𝑖 and𝜑 is a formulawith atmost 𝑗 free variables other than𝑥 and𝑦. The transitive-

closure formula [TC𝑥,𝑦𝜑 (𝑥,𝑦)] (𝑢, 𝑣) is true in a graph 𝐺 if there exists tuples of vertices 𝑧0, . . . , 𝑧𝑟 ∈ 𝑉 (𝐺)𝑖 with
𝑢 = 𝑧0 and 𝑣 = 𝑧𝑟 such that 𝐺 |= 𝜑 (𝑧ℓ , 𝑧ℓ+1) for all ℓ < 𝑟 .

ACM Trans. Comput. Logic, Vol. 24, No. 4, Article 30. Publication date: July 2023.

30:16 • N. Schirrmacher, S. Siebertz and A. Vigny

Every FO + conn𝑘 formula can be expressed in TC
1

𝑘
because the conn𝑘 operator can be expressed with the help

of the transitive-closure operator:

conn𝑘 (𝑥,𝑦, 𝑧1, . . . , 𝑧𝑘) = [TC𝑣,𝑤𝐸 (𝑣,𝑤) ∧ 𝑣 ≠ 𝑧1 ∧ . . . ∧ 𝑣 ≠ 𝑧𝑘 ∧𝑤 ≠ 𝑧1 ∧ . . . ∧𝑤 ≠ 𝑧𝑘] (𝑥,𝑦)
In fact, TC

1

𝑘
is more expressible than FO + conn𝑘 , as it can express bipartiteness [25, Example 7.2]. We repeat

the example for readers not familiar with transitive-closure logics. A graph is bipartite if and only if it does not

contain an odd cycle, which is expressed by the following formula:

¬∃𝑢∃𝑣
(
[TC𝑥,𝑦∃𝑧 (𝐸 (𝑥, 𝑧) ∧ 𝐸 (𝑧,𝑦))] (𝑢, 𝑣) ∧ 𝐸 (𝑣,𝑢)

)
On the other hand, 2-connectivity can naturally be expressed in FO + conn1, but, as we prove next, not in TC

1

0
.

We thank Martin Grohe for pointing us to the proof idea of the following theorem.

Theorem 5.1. 2-connectivity cannot be expressed in TC
1

0
.

To prove this theorem, we construct two graphs that cannot be distinguished by transitive closure logic TC
1

0

but only one of the graphs is 2-connected. We will rely on Gaifman’s Locality Theorem [21]. Let 𝐺 be a graph

and 𝑟 > 0 an integer. For 𝑣 ∈ 𝑉 (𝐺) we write 𝑁𝑟 (𝑣) for the 𝑟 -neighborhood of 𝑣 , that is, the set of vertices at

distance at most 𝑟 from 𝑣 . For a tuple 𝑣 of vertices we let 𝑁𝑟 (𝑣) =
⋃
𝑣∈𝑣 𝑁𝑟 (𝑣). A formula 𝜑 (𝑥) over graphs is

called 𝑟 -local if for every graph𝐺 and every |𝑥 |-tuple 𝑣 we have𝐺 |= 𝜑 (𝑣) ⇔ 𝐺 [𝑁𝑟 (𝑣)] |= 𝜑 (𝑣). We write 𝜑 (𝑟)
to

indicate that 𝜑 is 𝑟 -local. Note that for every fixed 𝑟 there exists an FO-formula dist(𝑥,𝑦) > 𝑟 , stating that the

distance between 𝑥 and 𝑦 is greater than 𝑟 .

Theorem 5.2 (Gaifman’s Locality Theorem [21] (adapted for graphs)). Every FO formula 𝜑 (𝑥) over graphs
is equivalent to a Boolean combination of the following:

• local formulas𝜓 (𝑟) (𝑥) around 𝑥 ;
• basic local sentences (with parameters 𝑟 and 𝑠) of the form

∃𝑥1 . . . ∃𝑥𝑠

(
𝑠∧
𝑖=1

𝜒 (𝑟) (𝑥𝑖) ∧
∧

1≤𝑖< 𝑗≤𝑠
dist(𝑥𝑖 , 𝑥 𝑗) > 2𝑟

)
for some r-local FO formula 𝜒 (𝑟) .

Furthermore, if qr(𝜑) = 𝑞, then 𝑟 ≤ 7
𝑞, 𝑠 ≤ 𝑞 + |𝑥 |. If 𝜑 is a sentence, then only basic local sentences appear in the

Boolean combination.

In regular high-girth graphs, we have the following corollary. Recall that the girth 𝑔 of a graph 𝐺 is the length

of a shortest cycle in 𝐺 .

Corollary 5.3. Let 𝑞, 𝑑 > 0 be integers, let 𝑟 = 7
𝑞 , 𝑠 = 𝑞 + 2 and 𝑔 = 4𝑟 + 1. Let 𝐺,𝐻 be two 𝑑-regular graphs of

girth at least 𝑔 with |𝑉 (𝐺) |, |𝑉 (𝐻) | ≥ 𝑠 · 𝑑2𝑟+1 and 𝜑 ∈ FO[𝑞]. Then
(1) 𝐺 and 𝐻 satisfy the same basic local sentences with parameters 𝑟 and 𝑠 . As a consequence, 𝐺 ≡𝑞 𝐻 .
(2) If𝑢, 𝑣 ∈ 𝑉 (𝐺) and𝑢′, 𝑣 ′ ∈ 𝑉 (𝐻) with dist(𝑢, 𝑣) > 2𝑟 and dist(𝑢′, 𝑣 ′) > 2𝑟 , then𝐺 |= 𝜑 (𝑢, 𝑣) ⇔ 𝐻 |= 𝜑 (𝑢′, 𝑣 ′).
(3) If 𝑢, 𝑣 ∈ 𝑉 (𝐺) and 𝑢′, 𝑣 ′ ∈ 𝑉 (𝐻) with dist(𝑢, 𝑣) = dist(𝑢′, 𝑣 ′), then 𝐺 |= 𝜑 (𝑢, 𝑣) ⇔ 𝐻 |= 𝜑 (𝑢′, 𝑣 ′).

Proof. As 𝐺 and 𝐻 are 𝑑-regular and have girth at least 𝑔 = 4𝑟 + 1, for all 𝑢, 𝑣 ∈ 𝑉 (𝐺), 𝑢′, 𝑣 ′ ∈ 𝑉 (𝐻) we have
𝐺 [𝑁𝑟 (𝑢)] � 𝐺 [𝑁𝑟 (𝑣)] � 𝐻 [𝑁𝑟 (𝑢′)] � 𝐻 [𝑁𝑟 (𝑣 ′)]; that is, the 𝑟 -neighborhoods of all vertices are isomorphic

(the neighborhoods induce 𝑑-regular trees). Consequently, for every 𝑟 -local formula 𝜒 (𝑥) and all 𝑢, 𝑣 ∈ 𝑉 (𝐺)
and 𝑢′, 𝑣 ′ ∈ 𝑉 (𝐻) we have 𝐺 |= 𝜒 (𝑢) ⇔ 𝐺 |= 𝜒 (𝑣) ⇔ 𝐻 |= 𝜒 (𝑢′) ⇔ 𝐻 |= 𝜒 (𝑣 ′). As 𝐺 is 𝑑-regular, we have

|𝑁2𝑟 (𝑣) | ≤ 𝑑2𝑟+1
for all 𝑣 ∈ 𝑉 (𝐺) ∪𝑉 (𝐻). As |𝑉 (𝐺) |, |𝑉 (𝐻) | ≥ 𝑠 · 𝑑2𝑟+1

, if for some (and hence for all) 𝑣 ∈ 𝑉 (𝐺)
we have 𝐺 |= 𝜒 (𝑣) and hence for some (and hence for all) 𝑣 ′ ∈ 𝑉 (𝐻) we have 𝐻 |= 𝜒 (𝑣 ′), then there exist at least

ACM Trans. Comput. Logic, Vol. 24, No. 4, Article 30. Publication date: July 2023.

First-Order Logic with Connectivity Operators • 30:17

𝑠 vertices in 𝐺 and in 𝐻 that satisfy 𝜒 and have pairwise distance greater than 2𝑟 (iteratively choose vertices

and remove the 2𝑟 -neighborhood, so that the next vertex can be chosen without conflicts). Hence, 𝐺 and 𝐻

satisfy the same basic local sentences with parameters 𝑟 and 𝑠 . As 𝜒 was chosen as an arbitrary 𝑟 -local formula,

by Theorem 5.2 we have 𝐺 ≡𝑞 𝐻 .
For the second statement, translate 𝜑 (𝑥,𝑦) into Gaifman normal form by using Theorem 5.2. By the first

statement, 𝐺 and 𝐻 satisfy the same basic local sentences with parameters 𝑟 and 𝑠 . Hence, we need to prove only

that all 𝑢, 𝑣 ∈ 𝑉 (𝐺) and 𝑢′, 𝑣 ′ ∈ 𝑉 (𝐺) with dist(𝑢, 𝑣) > 2𝑟 and dist(𝑢′, 𝑣 ′) > 2𝑟 satisfy the same 𝑟 -local formulas.

This however is clear, as 𝑁𝑟 (𝑢, 𝑣) � 𝑁𝑟 (𝑢′, 𝑣 ′) with isomorphisms that map 𝑢 to 𝑢′ and 𝑣 to 𝑣 ′ (the neighborhoods
induce forests consisting of two 𝑑-regular trees).

Similarly, for the third statement, if dist(𝑢, 𝑣) = dist(𝑢′, 𝑣 ′) ≤ 2𝑟 , then 𝐺 [𝑁𝑟 (𝑢, 𝑣)] � 𝐻 [𝑁𝑟 (𝑢′, 𝑣 ′)] (by the

assumption on the girth of𝐺 and𝐻 , these neighborhoods induce isomorphic𝑑-regular trees with two distinguished

vertices at the same distance) with isomorphisms that map𝑢 to𝑢′ and 𝑣 to 𝑣 ′. Hence,𝐺 |= 𝜑 (𝑢, 𝑣) ⇔ 𝐻 |= 𝜑 (𝑢′, 𝑣 ′).
□

We now construct two 12-regular graphs of high girth, 𝐺𝑞 and 𝐻𝑞 , where 𝐻𝑞 is 2-connected, but 𝐺𝑞 is only

1-connected and not 2-connected. Our construction is based on Cayley graphs, which encode the abstract structure

of groups. We do not care about the concrete constructions of Cayley graphs but only about their nice properties.

Lemma 5.4. For every 𝑞 ∈ N there exists a graph 𝐶𝑞 that is 12-regular, 2-connected, has girth 𝑔 = 7
𝑞
! + 1, and a

unique cycle of length 𝑔 (all other cycles are longer).

Proof. It is known that every finite connected Cayley graph of degree 𝑑 is

⌈
2(𝑑+1)

3

⌉
-connected [2, Theorem 3.7]

and there exist arbitrarily large (connected) 𝑑-regular Cayley graphs 𝐶 whose girth is 𝑔′ ≥ log𝑑−1
|𝐶 | [14].

Therefore, there exists a 12-regular Cayley graph 𝐶 that is 9-connected and has girth 𝑔′ ≥ log
11
|𝐶 | where the

girth only depends on the size of the graph.

We take such a Cayley graph 𝐶′
𝑞 with a girth 𝑔′ > 2 · 7

𝑞
! + 2. Then, there exists a cycle of length 𝑔′ in 𝐶′

𝑞 . We

now choose four vertices 𝑣1, . . . , 𝑣4 of this cycle such that dist(𝑣1, 𝑣3) = 1, dist(𝑣2, 𝑣4) = 1 and dist(𝑣1, 𝑣2) = 7
𝑞
!. By

removing the edges (𝑣1, 𝑣3) and (𝑣2, 𝑣4) and adding the new edges (𝑣1, 𝑣2) and (𝑣3, 𝑣4) (see Figure 3), we obtain
the graph 𝐶𝑞 .

By construction, 𝐶′
𝑞 is 12-regular and 9-connected. Every vertex in 𝐶𝑞 still has twelve neighbors and even by

removing the edges (𝑣1, 𝑣3) and (𝑣2, 𝑣4), the graph stays at least 2-connected.

Concerning the girth, we constructed a unique cycle of length 𝑔 going from 𝑣1 over 𝑣2 to 𝑣1. Furthermore, there

are no shorter cycles: Every cycle that does not use the edge {𝑣1, 𝑣2} has length greater than 𝑔′. □

We can now use this graph 𝐶𝑞 to construct the graphs 𝐺𝑞 and 𝐻𝑞 where 𝐻𝑞 is 2-connected, but 𝐺𝑞 is not

2-connected, see Figure 4. To this end, we take six disjoint copies of the graph𝐶𝑞 , namely 𝐴1, . . . , 𝐴6, and connect

them in the following way: To construct the graph 𝐺𝑞 , we choose in the six components 𝐴1, . . . , 𝐴6 two adjacent

vertices 𝑎𝑖 , 𝑎
′
𝑖 ∈ 𝑉 (𝐴𝑖) for every 1 ≤ 𝑖 ≤ 6 that do not lie on the unique cycle of length 𝑔. Then, we remove the

edges {𝑎𝑖 , 𝑎′𝑖 } for every 1 ≤ 𝑖 ≤ 6 and add a new vertex 𝑎 and new edges {𝑎, 𝑎𝑖 }, {𝑎, 𝑎′𝑖 } for every 1 ≤ 𝑖 ≤ 6. The

graph 𝐺𝑞 is thus defined as:

𝐺𝑞 = (𝑉 (𝐴1) ∪ . . . ∪𝑉 (𝐴6) ∪ {𝑎},
(𝐸 (𝐴1) \ {{𝑎1, 𝑎

′
1
}}) ∪ . . . ∪ (𝐸 (𝐴6) \ {{𝑎6, 𝑎

′
6
}}) ∪ {{𝑎, 𝑎1}, {𝑎, 𝑎′1}, . . . , {𝑎, 𝑎6}, {𝑎, 𝑎′6}})

To construct the graph 𝐻𝑞 , we take the same steps as for 𝐺𝑞 but twice: We also take six disjoint copies of 𝐶𝑞 ,

namely 𝐴1, . . . , 𝐴6. Then, we choose in the six components 𝐴1, . . . , 𝐴6 two adjacent vertices 𝑎𝑖 , 𝑎
′
𝑖 ∈ 𝑉 (𝐴𝑖) for

every 1 ≤ 𝑖 ≤ 6 that do not lie in the constructed cycle of length 𝑔. Additionally, we choose two adjacent vertices

𝑏𝑖 , 𝑏
′
𝑖 ∈ 𝑉 (𝐴𝑖) for every 1 ≤ 𝑖 ≤ 6 that do not lie on the constructed cycle of length 𝑔 such that the vertices 𝑎𝑖

ACM Trans. Comput. Logic, Vol. 24, No. 4, Article 30. Publication date: July 2023.

30:18 • N. Schirrmacher, S. Siebertz and A. Vigny

𝑣2 𝑣1

𝑣3𝑣4

= 7
𝑞
!

≥ 7
𝑞
!

Fig. 3. The cycle of length 𝑔′ > 2 · 7
𝑞

! + 2. By removing the dashed edges and adding the dotted edges, we obtain a unique
cycle of length 𝑔 = 7

𝑞
! + 1.

𝑎

𝑎1

𝑎′
1

𝑎2

𝑎′
2

𝑎3

𝑎′
3

𝑎4

𝑎′
4

𝑎5

𝑎′
5

𝑎6

𝑎′
6

𝐴1 𝐴2

𝐴3

𝐴4𝐴5

𝐴6

(a) 𝐺𝑞

𝑎

𝑎1

𝑎′
1

𝑎2

𝑎′
2

𝑎3

𝑎′
3

𝑎4

𝑎′
4

𝑎5

𝑎′
5

𝑎6

𝑎′
6

𝑏

𝑏1

𝑏′
1

𝑏2

𝑏′
2

𝑏3

𝑏′
3

𝑏4

𝑏′
4

𝑏5

𝑏′
5

𝑏6

𝑏′
6

𝐴1 𝐴2

𝐴3

𝐴4𝐴5

𝐴6

(b) 𝐻𝑞

Fig. 4. Construction of 𝐺𝑞 and 𝐻𝑞

and 𝑏𝑖 as well as the vertices 𝑎
′
𝑖 and 𝑏

′
𝑖 have distance at least 𝑔. Then, we remove the edges {𝑎𝑖 , 𝑎′𝑖 }, {𝑏𝑖 , 𝑏′𝑖 } for

every 1 ≤ 𝑖 ≤ 6 and add two new vertices 𝑎 and 𝑏 and new edges {𝑎, 𝑎𝑖 }, {𝑎, 𝑎′𝑖 }, {𝑏, 𝑏𝑖 }, {𝑏, 𝑏′𝑖 } for every 1 ≤ 𝑖 ≤ 6.

ACM Trans. Comput. Logic, Vol. 24, No. 4, Article 30. Publication date: July 2023.

First-Order Logic with Connectivity Operators • 30:19

Formally, the graph 𝐻𝑞 is defined as:

𝐻𝑞 = (𝑉 (𝐴1) ∪ . . . ∪𝑉 (𝐴6) ∪ {𝑎, 𝑏},
(𝐸 (𝐴1) \ {{𝑎1, 𝑎

′
1
}, {𝑏1, 𝑏

′
1
}}) ∪ . . . ∪ (𝐸 (𝐴6) \ {{𝑎6, 𝑎

′
6
}, {𝑏6, 𝑏

′
6
}})

∪ {{𝑎, 𝑎1}, {𝑎, 𝑎′1}, {𝑏,𝑏1}, {𝑏, 𝑏′1}, . . . , {𝑎, 𝑎6}, {𝑎, 𝑎′6}, {𝑏, 𝑏6}, {𝑏,𝑏′6}})
Lemma 5.5. The constructed graphs 𝐺𝑞 and 𝐻𝑞 are 12-regular and have girth 𝑔 = 7

𝑞
! + 1. Furthermore, 𝐻𝑞 is

2-connected and 𝐺𝑞 is connected but not 2-connected.

Proof. By construction, the graphs 𝐺𝑞 and 𝐻𝑞 are 12-regular because the components 𝐴1, . . . , 𝐴6 are 12-

regular and the added vertices 𝑎 and 𝑏 also have twelve neighbors. Furthermore, they have girth 𝑔 because the

components 𝐴1, . . . , 𝐴6 have girth 𝑔, and we do not destroy the cycles of length 𝑔 or introduce shorter cycles.

Both graphs, 𝐺𝑞 and 𝐻𝑞 are connected. However, 𝐺𝑞 is not 2-connected because it becomes disconnected by

removing the vertex 𝑎 ∈ 𝑉 (𝐺𝑞). The graph 𝐻𝑞 only becomes disconnected by removing the vertices 𝑎 and 𝑏 or

more vertices because 𝐴1, . . . , 𝐴6 are 2-connected as well. Hence, 𝐻𝑞 is 2-connected. □

In what follows, we show that (for sufficiently large 𝑞) the graphs 𝐺𝑞 and 𝐻𝑞 cannot be distinguished by

TC
1

0
formulas. More precisely, we show that over these graphs, the TC

1

0
operator is useless: Either every pair of

vertices is a solution, or none is. To show this, we first prove that between any two vertices, there is an 𝑟 -walk.

Definition 5.6. Given two vertices 𝑎, 𝑏 in a graph 𝐺 and an integer 𝑟 , an 𝑟 -walk from 𝑎 to 𝑏 is a sequence

𝑐0, 𝑐1, . . . 𝑐𝑚 such that 𝑐0 = 𝑎, 𝑐𝑚 = 𝑏 and ∀𝑖 < 𝑚 : dist(𝑐𝑖 , 𝑐𝑖+1) = 𝑟 .
Note that the existence of an 𝑟 -walk between 𝑎 and 𝑏 does not imply that the distance of 𝑎 and 𝑏 is a multiple

of 𝑟 as the 𝑟 -walk might not go through the shortest path. Note also that the existence of a walk from 𝑎 to 𝑏 of

length a multiple of 𝑟 might not imply the existence of an 𝑟 -walk. For example in a graph with two adjacent

vertices 𝑎, 𝑏, there is a walk 𝑎 − 𝑏 − 𝑎 − 𝑏 of length 3, while there is no 3-walk from 𝑎 to 𝑏.

Lemma 5.7. For all integers 𝑞, 𝑟 with 𝑟 ≤ 7
𝑞 and for all 𝑎, 𝑏 ∈ 𝑉 (𝐺𝑞) (resp. for all 𝑎, 𝑏 ∈ 𝑉 (𝐻𝑞)) there exists an

𝑟 -walk from 𝑎 to 𝑏.

Proof. Let 𝑔 = 7
𝑞
! + 1 be the girth of 𝐺𝑞 (resp. 𝐻𝑞). Recall that the shortest cycle 𝑆 of length 𝑔 is unique by

construction. Since 𝑟 ≤ 7
𝑞
divides 7

𝑞
!, it follows that 𝑔 ≡ 1[𝑟].

Let 𝑎′ be a vertex of 𝑆 such that dist(𝑎, 𝑎′) ≡ 0[𝑟] and 𝑏′ be a vertex of 𝑆 such that dist(𝑏, 𝑏′) ≡ 0[𝑟]. This
implies that there is an 𝑟 -walk from 𝑎 to 𝑎′ and from 𝑏 to 𝑏′.
Let 𝑑 = dist(𝑎′, 𝑏′). We can define an 𝑟 -walk from 𝑎′ to 𝑏′ that traverses the cycle 𝑆 𝑚 many times where we

choose𝑚 such that𝑚−𝑑 ≡ 0[𝑟]. Such𝑚 exists since the length of 𝑆 is 1[𝑟]. Observe now that we can concatenate

the 𝑟 -walks from 𝑎 to 𝑎′, from 𝑎′ to 𝑏′ and from 𝑏′ to 𝑏. □

Lemma 5.8. For all TC
1

0
formulas 𝜑 = [TC𝑢,𝑣Ψ(𝑢, 𝑣)] (𝑥,𝑦) there exists 𝑞 ∈ N such that either

(1) 𝐺𝑞 |= ∀𝑥,𝑦 𝜑 (𝑥,𝑦) 𝑎𝑛𝑑 𝐻𝑞 |= ∀𝑥,𝑦 𝜑 (𝑥,𝑦), 𝑜𝑟
(2) 𝐺𝑞 |= ∀𝑥,𝑦 ¬𝜑 (𝑥,𝑦) 𝑎𝑛𝑑 𝐻𝑞 |= ∀𝑥,𝑦 ¬𝜑 (𝑥,𝑦).

In a nutshell, Lemma 5.8 shows that the graphs𝐺𝑞 and 𝐻𝑞 are too regular for TC operators to define anything

else than true or false statements. The proof is performed by induction on the nesting of the TC operator. In the

base case, Ψ is an FO formula.

Proof. Let 𝜑 = [TC𝑢,𝑣Ψ(𝑢, 𝑣)] (𝑥,𝑦) and let 𝑞 be the quantifier rank of Ψ, that is Ψ ∈ FO[𝑞]. Let 𝑟0 = 7
𝑞
.

If there are no elements 𝑢, 𝑣 in 𝑉 (𝐺𝑞) nor in 𝑉 (𝐻𝑞) satisfying 𝜑 , then (2) of Lemma 5.8 holds. Assume now

that there exist 𝑎, 𝑏 ∈ 𝑉 (𝐺𝑞) such that 𝐺𝑞 |= 𝜑 (𝑎, 𝑏). By the definition of the TC operator, there exists a sequence

𝑐0, . . . , 𝑐𝑚 with 𝑐0 = 𝑎 and 𝑐𝑚 = 𝑏 such that 𝐺𝑞 |= Ψ(𝑐𝑖 , 𝑐𝑖+1) for all 𝑖 < 𝑚. Let 𝑟1 = dist(𝑐0, 𝑐1).

ACM Trans. Comput. Logic, Vol. 24, No. 4, Article 30. Publication date: July 2023.

30:20 • N. Schirrmacher, S. Siebertz and A. Vigny

(1) Assume first 𝑟1 ≤ 𝑟0. By Lemma 5.7, for all 𝑢, 𝑣 ∈ 𝑉 (𝐺𝑞) (resp. in 𝑉 (𝐻𝑞)) there exists an 𝑟1-walk 𝑑0, . . . , 𝑑𝑛
with 𝑑0 = 𝑢 and 𝑑𝑛 = 𝑣 and 𝐺𝑞 (resp. 𝐻𝑞) is a model of Ψ(𝑑𝑖 , 𝑑𝑖+1) for every 𝑖 < 𝑛. By the definition of the

TC operator, 𝐺𝑞 (resp. 𝐻𝑞) is a model of 𝜑 (𝑢, 𝑣).
(2) If 𝑟1 > 𝑟0, then for all 𝑢, 𝑣 in 𝐺𝑞 (resp. 𝐻𝑞) there exists 𝑤 such that dist(𝑢,𝑤) > 𝑟0 and dist(𝑤, 𝑣) > 𝑟0

(since 𝐺𝑞 is connected and contains a cycle of length > 2𝑟0 + 1) and then by Corollary 5.3 we have that 𝐺𝑞
(resp. 𝐻𝑞) is a model of Ψ(𝑢,𝑤) and Ψ(𝑤, 𝑣). By the definition of the TC operator,𝐺𝑞 (resp. 𝐻𝑞) is a model

of 𝜑 (𝑢, 𝑣).
The case where the elements 𝑎, 𝑏 satisfying 𝜑 are found in 𝐻𝑞 is analogous.

For TC formulas 𝜑 = [TC𝑢,𝑣Ψ(𝑢, 𝑣)] (𝑥,𝑦) where Ψ is not in FO, we can apply this procedure, replacing

inductively the uses of TC operator by either the True or the False predicates. □

We can then conclude that every TC
1

0
formula (of quantifier rank at most 𝑞) is equivalent to an FO formula on

the graphs 𝐺𝑞 and 𝐻𝑞 . This implies that no TC
1

0
formula expresses 2-connectivity. This concludes the proof of

Theorem 5.1. We conjecture that the statement of Theorem 5.1 generalizes to higher values of 𝑘 . However, using

the same proof idea, the proof for general 𝑘 ∈ N would be more technical. The construction of the graphs might

be similar but we would need to handle additional free variables in the transitive-closure operator which would

result in more difficult proofs to show that both graphs model the same TC
1

𝑘
-formulas.

Conjecture 5.9. For every integer 𝑘 , (𝑘 + 2)-connectivity cannot be expressed in TC
1

𝑘
.

FO FO + conn0 FO + conn1
. . . FO + conn𝑘

FO + DP1 FO + DP2
. . . FO + DP𝑘+1

TC
1

0
TC

1

1

. . . TC
1

𝑘

MSO⊊ ⊊ ⊊ ⊊ ⊊

⊊

⊊

⊆ ⊆ ⊆

⊊ ⊊

⊉
⊈ ⊊

⊊ ⊊ ⊊

≡ ⊊ ⊊

Fig. 5. Connections between the logics

6 CONCLUSION
We studied first-order logic enriched with connectivity predicates tailored to express algorithmic graph problems

that are commonly studied in contemporary parameterized algorithmics. This yields separator logic, which can

query connectivity after the deletion of a bounded number of elements, and disjoint-paths logic, which can

express the disjoint paths problem. We demonstrated a rich expressiveness that arises from the interplay of these

predicates with the nested quantification of first-order logic. We also studied the limits of expressiveness of these

new logics.

In a companion paper, we studied the model checking problem for separator logic and proved that it is fixed-

parameter tractable parameterized by formula size on classes of graphs that exclude a fixed topological minor [32].

This yields a powerful algorithmic meta-theorem for separator logic.

Using the same methods it is easy to show that model checking for formulas using only conn1 predicates

is fixed-parameter tractable on nowhere dense classes of graphs, which are even more general than classes

ACM Trans. Comput. Logic, Vol. 24, No. 4, Article 30. Publication date: July 2023.

First-Order Logic with Connectivity Operators • 30:21

excluding a topological minor. To obtain this latter result, observe that the block decomposition of a graph can

be understood as a tree decomposition with adhesion 1 such that each bag induces a 2-connected graph and

on 2-connected graphs FO + conn1 collapses to plain FO. We can then in each bag apply the model checking

result for FO on nowhere dense graphs [26] and apply the dynamic programming approach presented in [32] to

combine the solutions to a global solution. On the other hand, when we allow conn2 predicates, there are some

simple graph classes that do not exclude a topological minor but have bounded expansion, and on which model

checking becomes AW[★]-hard.
After the publication of the conference version of this paper it was also proved that the model checking problem

for FO + DP is fixed-parameter tractable on each class excluding a minor [23] and even on each class excluding a

topological minor [37], providing an even stronger algorithmic meta-theorem.

It will now be interesting to study other extensions of first-order logic that can express further interesting

algorithmic graph problems, such as reachability with regular paths queries. This would, in the simplest case,

allow expressing bipartiteness and the odd cycle transversal problem. On the other hand, it is very likely that

with general regular paths queries, we will get intractability beyond bounded treewidth graphs. The reason is

that with the help of stronger path queries, it may be possible to encode all graphs in grids. By the results of

Robertson and Seymour [35], a class has unbounded treewidth if and only if it contains all planar graphs, and in

particular all grids as a minor. Hence, an encoding may be possible as soon as the treewidth is unbounded.

REFERENCES
[1] Akanksha Agrawal, Lawqueen Kanesh, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. 2021. An FPT algorithm for elimination

distance to bounded degree graphs. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik.

[2] László Babai. 1996. Automorphism Groups, Isomorphism, Reconstruction. MIT Press, Cambridge, MA, USA, 1447–1540.

[3] Mikołaj Bojańczyk. 2021. Separator logic and star-free expressions for graphs. arXiv preprint arXiv:2107.13953 (2021).
[4] Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé, and Szymon Torunczyk. 2022. Twin-width

IV: ordered graphs and matrices. In STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24,
2022, Stefano Leonardi and Anupam Gupta (Eds.). ACM, 924–937.

[5] Jannis Bulian. 2017. Parameterized complexity of distances to sparse graph classes. Technical Report. University of Cambridge, Computer

Laboratory.

[6] Jannis Bulian and Anuj Dawar. 2016. Graph isomorphism parameterized by elimination distance to bounded degree. Algorithmica 75, 2
(2016), 363–382.

[7] Michael Buro. 2000. Simple Amazons endgames and their connection to Hamilton circuits in cubic subgrid graphs. In International
Conference on Computers and Games. Springer, 250–261.

[8] J. Richard Büchi. 1960. Weak Second-Order Arithmetic and Finite Automata. Mathematical Logic Quarterly 6, 1-6 (1960), 66–92.

[9] Thomas Colcombet. 2002. On families of graphs having a decidable first order theory with reachability. In Automata, Languages and
Programming: 29th International Colloquium, ICALP 2002 Málaga, Spain, July 8–13, 2002 Proceedings 29. Springer, 98–109.

[10] Bruno Courcelle. 1990. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and computation 85,

1 (1990), 12–75.

[11] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. 2000. Linear time solvable optimization problems on graphs of bounded

clique-width. Theory of Computing Systems 33, 2 (2000), 125–150.
[12] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh.

2015. Parameterized Algorithms. Springer.
[13] Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. 2019. Minimum Bisection Is Fixed-Parameter

Tractable. SIAM J. Comput. 48, 2 (2019), 417–450.
[14] Xavier Dahan. 2014. Regular graphs of large girth and arbitrary degree. Combinatorica 34, 4 (2014), 407–426.
[15] Emanuele D’Osualdo, RolandMeyer, and Georg Zetzsche. 2016. First-order logic with reachability for infinite-state systems. In Proceedings

of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science. 457–466.
[16] Heinz-Dieter Ebbinghaus and Jörg Flum. 2005. Finite model theory. Springer Science & Business Media.

[17] Ronald Fagin. 1974. Generalized first-order spectra and polynomial-time recognizable sets. Complexity of computation 7 (1974), 43–73.

[18] Fedor V. Fomin, Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. 2020. An Algorithmic Meta-Theorem for Graph

Modification to Planarity and FOL. In 28th Annual European Symposium on Algorithms, ESA 2020. 51:1–51:17.

ACM Trans. Comput. Logic, Vol. 24, No. 4, Article 30. Publication date: July 2023.

30:22 • N. Schirrmacher, S. Siebertz and A. Vigny

[19] Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. 2022. Parameterized Complexity of Elimination Distance to First-Order

Logic Properties. ACM Transactions on Computational Logic (TOCL) 23, 3 (2022), 1–35.
[20] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. 2020. Hitting topological minors is FPT. In

Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing. 1317–1326.
[21] Haim Gaifman. 1982. On local and non-local properties. In Studies in Logic and the Foundations of Mathematics. Vol. 107. Elsevier,

105–135.

[22] Robert Ganian, Petr Hliněnỳ, Alexander Langer, Jan Obdržálek, Peter Rossmanith, and Somnath Sikdar. 2014. Lower bounds on the

complexity of MSO1 model-checking. J. Comput. System Sci. 80, 1 (2014), 180–194.
[23] Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. 2023. Model-Checking for First-Order Logic with Disjoint Paths

Predicates in Proper Minor-Closed Graph Classes. In Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023,
Florence, Italy, January 22-25, 2023, Nikhil Bansal and Viswanath Nagarajan (Eds.). SIAM, 3684–3699.

[24] Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer, Moshe Y. Vardi, Yde Venema, and Scott Weinstein. 2007.

Finite Model Theory and its applications. Springer Science & Business Media.

[25] Martin Grohe. 2008. Logic, graphs, and algorithms. Logic and automata 2 (2008), 357–422.
[26] Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. 2017. Deciding first-order properties of nowhere dense graphs. Journal of the

ACM (JACM) 64, 3 (2017), 17.
[27] Eva-Maria C. Hols, Stefan Kratsch, and Astrid Pieterse. 2020. Elimination Distances, Blocking Sets, and Kernels for Vertex Cover. In

STACS.
[28] Bart M. P. Jansen, Jari J. H. de Kroon, and Michał Włodarczyk. 2021. Vertex deletion parameterized by elimination distance and even

less. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing. 1757–1769.
[29] Stephan Kreutzer and Siamak Tazari. 2010. Lower bounds for the complexity of monadic second-order logic. In 2010 25th Annual IEEE

Symposium on Logic in Computer Science. IEEE, 189–198.
[30] Leonid Libkin. 2013. Elements of finite model theory. Springer Science & Business Media.

[31] Alexander Lindermayr, Sebastian Siebertz, and Alexandre Vigny. 2020. Elimination Distance to Bounded Degree on Planar Graphs. In

45th International Symposium on Mathematical Foundations of Computer Science, MFCS 2020, August 24-28, 2020, Prague, Czech Republic.
65:1–65:12.

[32] Michal Pilipczuk, Nicole Schirrmacher, Sebastian Siebertz, Szymon Torunczyk, and Alexandre Vigny. 2022. Algorithms and Data

Structures for First-Order Logic with Connectivity Under Vertex Failures. In 49th International Colloquium on Automata, Languages, and
Programming, ICALP 2022, July 4-8, 2022, Paris, France (LIPIcs, Vol. 229), Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff

(Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 102:1–102:18.

[33] Bruce Reed, Kaleigh Smith, and Adrian Vetta. 2004. Finding odd cycle transversals. Operations Research Letters 32, 4 (2004), 299–301.
[34] Neil Robertson and P.D. Seymour. 2004. Graph Minors. XX. Wagner’s conjecture. Journal of Combinatorial Theory, Series B 92, 2 (2004),

325–357. Special Issue Dedicated to Professor W.T. Tutte.

[35] Neil Robertson and Paul D. Seymour. 1986. Graph minors. V. Excluding a planar graph. J. Comb. Theory, Ser. B 41, 1 (1986), 92–114.

[36] Neil Robertson and P. D. Seymour. 1995. Graph Minors. XIII. The Disjoint Paths Problem. J. Combin. Theory Ser. B 63 (1995), 65–110.

[37] Nicole Schirrmacher, Sebastian Siebertz, Giannos Stamoulis, Dimitrios M Thilikos, and Alexandre Vigny. 2023. Model Checking

Disjoint-Paths Logic on Topological-Minor-Free Graph Classes. arXiv preprint arXiv:2302.07033 (2023).
[38] Stefan Schulz. 2010. First-order logic with reachability predicates on infinite systems. In IARCS Annual Conference on Foundations of

Software Technology and Theoretical Computer Science (FSTTCS 2010). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[39] Wolfgang Thomas. 1997. Languages, Automata, and Logic. In Handbook of Formal Languages, Volume 3: Beyond Words, Grzegorz
Rozenberg and Arto Salomaa (Eds.). Springer, 389–455.

[40] Klaus Wagner. 1937. Über eine Eigenschaft der ebenen Komplexe. Math. Ann. 114, 1 (1937), 570–590.

ACM Trans. Comput. Logic, Vol. 24, No. 4, Article 30. Publication date: July 2023.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Separator logic
	3.1 Expressive power of separator logic
	3.2 The limits of separator logic

	4 Disjoint-paths logic
	4.1 Expressive power of disjoint-paths logic
	4.2 The limits of disjoint-paths logic
	4.3 Equivalent operators

	5 Connection to other logics
	5.1 Monadic second-order logic
	5.2 Transitive-closure logic

	6 Conclusion
	References

