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1. Introduction

A dominating set in an undirected and simple graph G is a set D ⊆ V (G) such that every
vertex v ∈ V (G) either belongs to D or has a neighbor in D. The dominating set problem has
many applications in theory and practice, see e.g. [17, 46], unfortunately however, already the
decision problem whether a graph admits a dominating set of size k is NP-hard [33] and this even
holds in very restricted settings, e.g. on planar graphs of maximum degree 3 [25].

Consequently, attention shifted from computing exact solutions to approximating near optimal
dominating sets. A simple greedy algorithm computes an ln n approximation (where n is number
of vertices of the input graph) of a minimum dominating set [31, 41], and for general graphs this
algorithm is near optimal – it is NP-hard to approximate minimum dominating sets within factor
(1 − ") ln n for every " > 0 [15].

Therefore, researchers tried to identify restricted graph classes where better (sequential)
approximations are possible. For example, the problem admits a PTAS on classes with sub-
exponential expansion [28]. Here, expansion refers to the edge density of bounded depth minors,
which we will define formally below. Important examples of classes with subexponential expansion
include the class of planar graphs and more generally classes that exclude some fixed graph as a
minor. The dominating set problem admits a constant factor approximation on classes of bounded
degeneracy (equivalently, of bounded arboricity) [7, 40] and an  (ln 
) approximation (where 

denotes the size of a minimum dominating set) on classes of bounded VC-dimension [10, 21].
In fact, the greedy algorithm can be modified to yield an  (ln 
) approximation on biclique-free
graphs (graphs that exclude some fixed complete bipartite graph Kt,t as a subgraph) [47] andeven a constant factor approximation on graphs with bounded degeneracy [32]. However, it is
unlikely that polynomial-time constant factor approximations exist even on K3,3-free graphs [47].The general goal in this line of research is to identify the broadest graph classes on which the
dominating set problem (or other important problems that are hard on general graphs) can be
approximated efficiently with a certain guarantee on the approximation factor. These limits of
tractability are often captured by abstract notions, such as expansion, degeneracy or VC-dimension
of graph classes.

In this paper we study the distributed time complexity of finding dominating sets in the classic
LOCAL model of distributed computing, which can be traced back at least to the seminal work of
Gallager, Humblet and Spira [24]. In this model, a distributed system is modeled by an undirected
(connected) graph G, in which every vertex represents a computational entity of the network and
every edge represents a bidirectional communication channel. The vertices are equipped with
unique identifiers. In a distributed algorithm, initially, the nodes have no knowledge about the
network graph. They must then communicate and coordinate their actions by passing messages
to one another in order to achieve a common goal, in our case, to compute a dominating set of
the network graph. The LOCAL model focuses on the aspects of communication complexity
and therefore the main measure for the efficiency of a distributed algorithm is the number of
communication rounds it needs until it returns its answer.

Kuhn et al. [37] proved that in r rounds on an n-vertex graphs of maximum degree Δ one
can approximate minimum dominating sets only within a factor Ω(nc∕r2∕r) and Ω(Δ1∕(r+1)∕r),
respectively, where c is a constant. This implies that, in general, to achieve a constant approxima-
tion ratio, we need at least Ω(√log n∕ log log n) and Ω(logΔ∕ log logΔ) communication rounds,
respectively. Kuhn et al. [37] also presented a (1 + ") lnΔ-approximation that runs in  (log(n)∕")
rounds for any " > 0, Barenboim et al. [8] presented a deterministic  ((log n)k−1)-time algorithm
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that provides an  (n1∕k)-approximation, for any integer parameter k ≥ 2. More recently, the
combined results of Rozhon, Ghaffari, Kuhn, and Maus [26, 45] provide an algorithm computing
a (1 + ")-approximation of the dominating set in poly(log(n)∕") rounds [45, Corollary 3.11].

Since by the results of Kuhn et al. [37] in general graphs it is not possible to compute a constant
factor approximation in a constant number of rounds, much effort has been invested to improve
the ratio between approximation factor and number of rounds on special graph classes. For graphs
of degeneracy a (equivalent to arboricity up to factor 2), Lenzen and Wattenhofer [40] provided
an algorithm that achieves a factor  (a2) approximation in randomized time  (log n), and a
deterministic  (a logΔ) approximation algorithm with  (logΔ) rounds. Graphs of bounded
degeneracy include all graphs that exclude a fixed graph as a (topological) minor and in particular,
all planar graphs and any class of bounded genus.

Amiri et al. [1] provided a deterministic (log n) time constant factor approximation algorithm
on classes of bounded expansion (which extends also to connected dominating sets). Czygrinow
et al. [11] showed that for any given " > 0, (1 + ")-approximations of a maximum independent
set, a maximum matching, and a minimum dominating set, can be computed in  (log∗ n) rounds
in planar graphs, which is asymptotically optimal [39].

Lenzen et al. [38] proved that on planar graphs a 130-approximation of a minimum dominating
set can be computed in a constant number of rounds. A careful analysis of Wawrzyniak [50] later
showed that the algorithm computes in fact a 52-approximation. In terms of lower bounds, Hilke
et al. [30] showed that there is no deterministic local algorithm (constant-time distributed graph
algorithm) that finds a (7 − ")-approximation of a minimum dominating set on planar graphs, for
any positive constant ". Better approximation ratios are known for some special cases, e.g. 32 if
the planar graph is triangle-free [3, Theorem 2.1], 18 if the planar graph has girth five [4] and 5 if
the graph is outerplanar (and this bound is tight) [9, Theorem 1]. Wawrzyniak [49] showed that
message sizes of (log n) suffice to give a constant factor approximation on planar graphs in a
constant number of rounds.

The constant factor approximations in a constant number of rounds for planar graphs were
gradually extended to classes with bounded genus [2, 5], classes with sublogarithmic expansion [6]
and eventually by Czygrinow et al. [12] to classes with excluded topological minors. Again, one
of the main goals in this line of research is to find the most general graph classes on which the
dominating set problem admits a constant factor approximation in a constant number of rounds.

We take a step towards this goal and generalize the result of Czygrinow et al. [12] to classes
of bounded expansion. The notion of bounded expansion was introduced by Nešetřil and Ossona
de Mendez [42] and offers an abstract definition of uniform sparseness in graphs. It is based on
bounding the density of shallow minors. Intuitively, while a minor is obtained by contracting
arbitrary connected subgraphs of a graph to single vertices, in an r-shallow minor we are only
allowed to contract connected subgraphs of radius at most r.

A class of graphs has bounded expansion if for every radius r the set of all r-shallow minors
has edge density bounded by a constant depending only on r. We write ∇r(G) for the maximal
edge density of an r-shallow minor of a graph G. Of course, every class C that excludes a fixed
graphH as a minor has bounded expansion. For such classes there exists an absolute constant c
such that for all G ∈ C and all r we have ∇r(G) ≤ c. Special cases are the class of planar graphs,
every class of graphs that can be drawn with a bounded number of crossings, and every class of
graphs that embeds into a fixed surface. Every class of intersection graphs of low density objects
in low dimensional Euclidean space has polynomial expansion, that is, the function ∇r is boundedpolynomially in r on C . Also every class C that excludes a fixed graphH as a topological minor
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Figure 1: Inclusion diagram of the mentioned graph classes.

has bounded expansion. Important special cases are classes of bounded degree and classes of
graphs that can be drawn with a linear number of crossings. Further examples include classes of
graphs with bounded queue-number, bounded stack-number or bounded non-repetitive chromatic
number. Also, for each constant d > 0 there is a bounded expansion class Rd , to which the
Erdős-Rényi random graphs G(n, d∕n) belong asymptotically almost surely. See [28, 44] for
reference to all these examples.

Classes of bounded expansion are more general than classes excluding a topological minor.
However, maybe not surprisingly, when performing local computations, it is not properties of
minors or topological minors, but rather of shallow minors that enable the necessary combinatorial
arguments in the algorithms. This observation was already made in the study of the kernelization
complexity of dominating set on classes of sparse graphs [16, 19, 20, 22, 34]. Moreover, bounding
the edge density of shallowminorsmight be needed only up to some depth. For example, degenerate
classes are those classes where only ∇0(G), the edge density of subgraphs, is bounded, and these
classes are more general than classes of bounded expansion.

The algorithm of Czygrinow et al. [12] for classes excluding a topological minor is based on an
quite complicated iterative process of choosing dominating vertices from so called pseudo-covers.
Based on the fact that classes excluding a topological minor in particular exclude some complete
bipartite graph Kt,t as a subgraph, it is proved that this iterative process terminates after at most t
rounds and produces a good approximation of a minimum dominating set.

2. Our contribution

Our contribution is threefold: First, we simplify the arguments used by Czygrinow et al. and
give a more accessible description of their algorithm. Second, we identify the boundedness
of ∇1(G) as the key property that makes the algorithm work. Classes with only this restriction
are less general than degenerate classes, but more general than bounded expansion classes. We
generalize the algorithm to these general classes and prove that the pseudo-covering method cannot
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be extended further, e.g. to classes of bounded degeneracy. Last, we optimize the bounds that arise
in the algorithm in terms of several parameters. Czygrinow et al. explicitly stated that they did not
aim to optimize any constants, and as presented, the constants in their construction are enormous.
Even though the constants in our analysis are still large, they are by magnitudes smaller than those
in the original presentation. The following is our first main theorem.

Theorem 2.1. Let ∇1 > 0 be an integer. There exists a LOCAL algorithm that computes in
a constant number of rounds, for any input graph G with ∇1(G) ≤ ∇1, a dominating set of
size  (
(G)), where 
(G) denotes the size of a minimum dominating set of G.
Note that the algorithm depends on the constant ∇1. The reason for this is that we cannot

locally compute or approximate ∇1(G) in a constant number of rounds. This is also the case for
the algorithm of Czygrinow et al., which works with the assumption that the inputs exclude a
complete graph Kt with t vertices as a topological minor, a property that can also not be verified
locally. Furthermore, the number of rounds depends on ∇1.The algorithm is actually tuned using more parameters, like upper bounds on ∇0(G) and onintegers s and t such that the complete bipartite graphKs,t is not subgraph ofG, in order to improve
the approximation ratio of the algorithm. However, all these parameters can be upper bounded in
terms of∇1. When these parameters are given, the algorithm computes a (2(∇0+1)((2∇1)4s∇1+2)
approximation in a number of rounds that depends on ∇1 and t.

Then, we modify and fine-tune the algorithm for graphs excluding K3,t as a subgraph (and
having ∇1 bounded). Important examples of graphs with this property are graphs that can be
embedded into a fixed surface of bounded genus. We prove the following theorem.

Theorem 2.2. Let ∇1 > 0 and t ≥ 3 be integers. There exists a LOCAL algorithm and a
function C that for every K3,t-free graph G with ∇1(G) ≤ ∇1 and every " > 0, computes
in C(") rounds a dominating set of size at most (6∇1 + 3)
 .
Since planar graphs satisfy ∇1 ≤ 3 and exclude K3, 3 as a subgraph, from Theorem 2.2 we

can derive an approximation factor of 21 for planar graphs. A more careful analysis leads to the
following theorem.

Theorem 2.3. There exists a LOCAL algorithm and a function C that for every planar input
graph G and " > 0, computes in C(") rounds a dominating set of size at most (11 + ") ⋅ 
(G).
We further analyze our algorithm on restricted classes of planar graphs and improve the upper

bounds in several cases (see Table 1).

Graph class Lower bound Previous upper bound Our upper bound
Planar graphs 7 − " [30] 52 [50] 11 + "

Triangle-free planar graphs 32 [3] 8 + "
Bipartite planar graphs 7 + "
Outerplanar graphs 5 [9] 5 [9] (8 + ")

Girth ≥ 5 planar graphs 18 [4] 7

Table 1: Approximation factors for a LOCAL approximation of 
(G) is a constant number of rounds. Our algorithm
improves the approximation factors in all these cases, except for the class of outerplanar graphs.
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Before we go into the technical details, let us give an overview of the algorithm. The algorithm
works in three phases. Each phase (i ∈ {1, 2, 3}) computes a small set Di that is added to the
output dominating set (where by a small set we mean a set whose size is linear in 
).

The first phase is a preprocessing phase, which was similarly employed in the algorithm of
Lenzen et al. [38]. In a key lemma, Lenzen et al. proved that for planar graphs there are only
few vertices whose open neighborhood cannot be dominated by at most six vertices. This lemma
generalizes to graphs G where ∇1(G) is bounded as shown in [6] (where six is replaced by a
different constant depending on ∇1(G)). We improve this general lemma and derive in particular
that in the case of planar graphs there are only few vertices whose open neighborhood cannot be
dominated by three other vertices. We pick these few vertices as the set D1, remove them from G
and mark all their neighbors as dominated. Hence, after the first phase the open neighborhoods of
all remaining vertices can be dominated by a constant number of other vertices.

In the second phase, we compute concurrently for each vertex v all the so-called domination
sequences v1,… , vs starting at v (see Definition 5.3 for a formal definition). The analysis of this
phase is based on the construction of pseudo-covers as in the work of Czygrinow et al. [12] and
in the approach of greedy domination in biclique-free graphs [47]. The domination sequences
intuitively provide a tool to carry out a fine-grained analysis of the vertices that can potentially
dominate the remaining non-dominated neighborhoods. All the vertices vs are gathered in the
set D2 and are removed from G, with all their neighbors marked as dominated. For K3,t-freegraphs, we slightly modify the algorithm and provide an even finer analysis.

Call the number dR(v) of non-dominated neighbors of a vertex v the residual degree of v. We
prove that after the second phase we are left with a graph where every vertex has residual degree
at most ΔR for a constant ΔR. In particular, every vertex from a minimum dominating set of size 

can dominate at most ΔR + 1 non-dominated vertices (each vertex dominates its neighbors and
itself) and we conclude that the set R of non-dominated vertices has size bounded by (ΔR + 1)
 .Hence, we could at this point pick all non-dominated vertices to add at most (ΔR + 1)
 verticesand conclude. Instead, we study two different ways to proceed with a third phase.

Our first option for the third phase is to apply an LP-approximation based on results of Bansal
and Umboh [7], who showed that a very simple selection procedure leads to a constant factor
approximation when the solution to the dominating set linear program (LP) is given. As shown
by Kuhn et al. [36] we can approximate such a solution in a constant number of rounds when the
maximum degree Δ of the graph is bounded. To apply these results, we have to overcome two
obstacles. First, note that even though we have established that the maximum residual degree
is bounded by a constant ΔR, we may still have unbounded maximum degree Δ. We overcome
this problem by keeping only a few representative potential dominators around the set R of non-
dominated vertices. By a simple density argument, there can be only very few high degree vertices
left that we simply select into the dominating set. As a result, we are left with a graph where Δ is
bounded by a constant. The second obstacle, which is easily overcome, is that we do not need to
dominate the whole remaining graph but only the set R. This requires a small adaptation of the
LP-formulation of the problem and a proof that the algorithm of Bansal and Umboh still works for
this slightly different setting. In total, in this version of the third phase of the algorithm, we add at
most (
) vertices.

Our second option for the third phase is to design a distributed version of the classical greedy
algorithm. We proceed in a greedy manner in d rounds, as follows (where d is a bound on the
maximum residual degree ΔR of the graph after phase 2). In the first round, if a non-dominated
vertex has a neighbor of residual degree d, it elects one such neighbor into the dominating set (or
if it has residual degree d itself, it may choose itself). The neighbors of the chosen elements are
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marked as dominated and the residual degrees are updated. Note that all non-dominated neighbors
of a vertex of residual degree d in this round select a dominator. Hence, the residual degrees of
all vertices of residual degree d are decreased to 0 and, after this round, there are no vertices of
residual degree d left. In the second round, if a non-dominated vertex has a neighbor of residual
degree d − 1, it elects one such vertex into the dominating set, and so on, until after d rounds in
the final round every vertex selects a dominator. Unlike in the general case, where nodes cannot
learn the current maximum residual degree in a constant number of rounds, by establishing an
upper bound on the maximum residual degree and proceeding in exactly this number of rounds,
we ensure that we iteratively exactly selects the vertices of maximum residual degree. For the case
of planar graphs, we prove that ΔR ≤ 30. It remains to analyze the performance of this algorithm.

A simple density argument shows that there cannot be too many vertices of degree i ≥ 2∇0(G)(i ≥ 6 in a planar graph). At a first glance it seems that the algorithm would perform worst when
in every of the dR rounds it would pick as many vertices as possible, as the constructed dominating
set would grow as much as possible. However, this is not the case, as picking many high degree
vertices at the same time makes the largest progress towards dominating the whole graph. It turns
out that there is a delicate balance between the vertices that we pick in round i and the remaining
non-dominated vertices that leads to the worst case. For planar graphs in total, this leads to a 20-
approximation. While the greedy algorithm falls short of achieving the best approximation factor,
it is much simpler than the LP-based approach, and interesting to analyze in its own right.

3. Preliminaries

In this paper we study the distributed time complexity of finding dominating sets in undirected
and simple graphs in the classical LOCAL model of distributed computing. We assume familiarity
with this model and refer to the survey [48] for an extensive background on distributed computing
and on the LOCAL model.

We use standard notation from graph theory and refer to the textbook [14] for extensive
background. All graphs in this paper are undirected and simple. We write V (G) for the vertex set
of a graph G and E(G) for its edge set. The girth of a graph G is the length of a shortest cycle
in G. A graph is triangle-free if it does not contain a triangle (that is, a cycle of length three) as a
subgraph. Equivalently, a triangle-free graph is a graph with girth at least four.

A graph is bipartite if its vertex set can be partitioned into two parts such that all its edges
are incident with two vertices from different parts. We write Ks,t for the complete bipartite graph
with parts of size s and t, respectively. A set A is independent if no two vertices u, v ∈ A are
adjacent. We write �(G) for the size of the largest independent set in a graph G. The Hall ratio
�(G) of G is defined as max{|V (H)|∕�(H) ∣ H ⊆ G

}. Hence, every subgraphH of G contains
an independent set of size at least |V (H)|∕�(G).

A graph H is a minor of a graph G, written H ≼ G, if there is a set {Gv ∶ v ∈ V (H)} ofvertex disjoint and connected subgraphs Gv ⊆ G such that if {u, v} ∈ E(H), then there is an edge
between a vertex of Gu and a vertex of Gv. We say that V (Gv) is the branch set of v and say that
it is contracted to the vertex v. The set {Gv ∶ v ∈ V (H)} is a minor model ofH . The depth of
a minor model is the maximum radius of one of its branch sets. We call H a 1-shallow minor,
writtenH ≼1 G, ifH ≼ G and there is a minor model {Gv ∶ v ∈ V (H)} with depth at most 1
witnessing this. In other words,H ≼1 G ifH is obtained from G by deleting some vertices and
edges and then contracting a set of pairwise disjoint stars. We refer to [43] for an in-depth study
of the theory of sparsity based on shallow minors.
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A graph is planar if it can be embedded in the plane, that is, it can be drawn on the plane in
such a way that its edges intersect only at their endpoints. By the famous theorem of Wagner,
planar graphs can be characterized as those graphs that exclude the complete graph K5 on five
vertices and the complete bipartite K3,3 with parts of size three as a minor. In particular, a minor
of a planar graph is again planar.

A graph is outerplanar if it has an embedding in the plane such that all vertices belong to the
unbounded face of the embedding. Equivalently, a graph is outerplanar if it does not contain the
complete graph K4 on four vertices and the complete bipartite graph K2,3 with parts of size 2
and 3, respectively, as a minor. Again, a minor of an outerplanar graph is again outerplanar.

By Euler’s formula, planar graphs are sparse: every planar n-vertex graph (n ≥ 3) has at most
3n−6 edges (and a graph with at most two vertices has at most one edge). The ratio |E(G)|∕|V (G)|
is called the edge density ofG. In particular, every planar graphG has edge density strictly smaller
than three. We define

∇0(G) = max
{

|E(H)|
|V (H)|

|

|

|

H ⊆ G
}

,

∇1(G) = max
{

|E(H)|
|V (H)|

|

|

|

H ≼1 G
}

,

∇B1 (G) = max
{

|E(H)|
|V (H)|

|

|

|

H ≼1 G,H bipartite
}

.

It is immediate that ∇0(G) ≤ ∇B1 (G) ≤ ∇1(G). Note that every graph G (and each of its
subgraphs) contains a vertex with degree at most 2∇0(G). By iteratively removing a minimum
degree vertex and its neighbors, we can find a large independent set, as stated in the next lemma.
The bounds for graphs on surfaces are well known.

Lemma 3.1. For all graphs G we have �(G) ≤ 2∇0(G) + 1. Furthermore,
1. if G is planar, then ∇0(G) < 3, ∇B1 (G) < 2 and �(G) ≤ 4;
2. if G is outerplanar, or planar and triangle free, then ∇0(G) < 2 and �(G) ≤ 3;
3. if G is planar and bipartite, then ∇0(G) < 2 and �(G) ≤ 2.

For a graphG and v ∈ V (G)we writeN(v) = {u∶ {u, v} ∈ E(G)} for the open neighborhood
of v andN[v] = N(v) ∪ {v} for the closed neighborhood of v. For a set A ⊆ V (G) letN[A] =
⋃

v∈AN[v]. A dominating set in a graph G is a set D ⊆ V (G) such that N[D] = V (G). We
write 
(G) for the size of a minimum dominating set of G. For a set R ⊆ V (G) we say that a set
Z ⊆ V (G) dominates or covers R if R ⊆ N[Z]. For v ∈ V (G) we let NR(v) = N(v) ∩ R and
dR(v) = |NR(v)|.

An orientation of a graphG is a directed graph G⃗ that has exactly one of the arcs (u, v) and (v, u)
for each edge {u, v} ∈ E(G). The out-degree d+(v) of a vertex v in G⃗ is the number of arcs leav-
ing v. The following lemma is implicit in the work of Hakimi [27], see also [43, Proposition 3.3].

Lemma 3.2. Every graph G has an orientation with maximum out-degree ∇0.
We immediately deduce the next corollary.
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Corollary 3.1. Let G be a planar graph. Then
1. G has an orientation with maximum out-degree 3.
2. If G is triangle-free or outerplanar, then G has an orientation with maximum out-

degree 2.

In the following we fix and (possibly defined in terms of ∇1)
• the input graph G,
• a minimum dominating set D,
• 
 ∶= |D|,
• the parameter ∇1 ≥ ∇1(G),

• the parameter ∇0 ∈ [∇0(G),∇1],
• the parameter ∇ ∈ (∇B1 (G),∇1 + 1],
• the parameters s ≤ t with Ks,t ⊈ G,

where D and 
 are used only to analyze the performance of the algorithm, and where all
the parameters are integers.

Above, [a, b] denotes the closed real interval containing all x with a ≤ x ≤ b and (a, b] denotes
the half-open interval containing all x with a < x ≤ b. We can choose s = t = 2⌊∇0(G)⌋ + 1.

4. Phase 1: Preprocessing

4.1. Small neighborhoods dominators

As outlined in the introduction, our algorithm works in three phases. In phase i for 1 ≤ i ≤ 3
we select a partial dominating set Di and estimate its size in comparison to D. In the end we will
return D1 ∪D2 ∪D3. We will call vertices have been selected into a set Di green, vertices thatare dominated by a green vertex but are not green themselves are called yellow and all vertices
that still need to be dominated are called red. In the beginning, all vertices are marked red.

The first phase of our algorithm is similar to the first phase of the algorithm of Lenzen et al. [38]
for planar graphs. It is a preprocessing step that leaves us with only vertices whose neighborhoods
can be dominated by a few other vertices. Lenzen et al. proved that if G is planar, then there exist
less than 3
 many vertices v such that the open neighborhoodN(v) of v cannot be dominated by 6
vertices of V (G) ⧵ {v} [38, Lemma 6.3]. The lemma can be generalized to more general graphs,
see [6]. We prove the following lemma, which is stronger in the sense that the number of vertices
required to dominate the open neighborhoods is smaller than in [38] and [6], at the cost of having
slightly more vertices with that property.

Lemma 4.1. Let D̂ be the set of vertices v ∈ V (G) whose neighborhood cannot be dominated
by (2∇ − 1) vertices of D other than v, that is,
D̂ ∶= {v ∈ V (G) ∶ for all sets A ⊆ D ⧵ {v} withN(v) ⊆ N[A] we have |A| > (2∇ − 1)}.
Then |D̂ ⧵D| < �(G) ⋅ 
 .
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Remember that∇ is an integer strictly larger than∇B1 (G), the edge density of a densest bipartite
1-shallow minor of G. Additionally �(G) ≤ �(G) ≤ 2∇0(G) + 1 ≤ 2∇1 + 1. The precise valueswill be relevant for the planar case.

Proof. Assume D = {b1,… , b
}. Assume that there are �(G) ⋅ 
 vertices a1,… , a�(G)⋅
 ∉ D
satisfying the above condition. Be definition of the Hall ratio we find an independent subset of
the ais of size 
 . We can hence assume that a1,… , a
 are not connected by an edge. We proceed
towards a contradiction.

We construct a bipartite 1-shallow minorH of G with the following 2
 branch sets. For every
i ≤ 
 we have a branch set Ai = {ai} and a branch set Bi = N[bi] ⧵

(

{a1,… , a
} ∪
⋃

j<iN[bj]
∪{bi+1,… , b
}

). Note that the Bi are vertex disjoint and hence we define proper branch sets.
Intuitively, for each vertex v ∈ N(ai) we mark the smallest bj that dominates v as its dominator.
We then contract the vertices that mark bj as a dominator together with bj into a single vertex. Notethat because the ai are independent, the vertices ai themselves are not associated to a dominator as
no aj lies inN(ai) for i ≠ j. Denote by a′1,… , a′
 , b

′
1,… , b′
 the associated vertices ofH . Denote

by A the set of the a′is and by B the set of the b′js. We delete all edges between vertices of B. The
vertices of A are independent by construction. Hence,H is a bipartite 1-shallow minor of G. By
the assumption thatN(ai) cannot be dominated by 2∇− 1 elements ofD, we associate at least 2∇
different dominators with the vertices ofN(ai). Note that this would not necessarily be true if A
was not an independent set, as all aj ∈ N(ai) would not be associated a dominator.

Since {b1,… , b
} is a dominating set of G and by assumption onN(ai), we have that inH ,
every a′i has at least 2∇ neighbors in B. Hence, |E(H)| ≥ 2∇|V (A)| = 2∇
 . As |V (H)| = 2

we conclude |E(H)| ≥ ∇|V (H)|. This however is a contradiction, as by assumption ∇ is strictly
larger than ∇B1 (G) the edge density of a densest bipartite 1-shallow minor of G.

Let us fix the set D̂ for our graph G.

D̂ ∶= {v ∈ V (G) ∶ for all A ⊆ D ⧵ {v} withN(v) ⊆ N[A] we have |A| > (2∇ − 1)}.

Note that D̂ cannot be computed by a local algorithm as we do not know the set D. It will
only serve as an auxiliary set in our analysis.

We define D1 as the set of all vertices whose neighborhood cannot be dominated by 2∇ − 1
other vertices. The first phase of the algorithm is to compute the set D1, which can be done in 2rounds of communication.

D1 ∶= {v ∈ V (G) ∶ for all A ⊆ V (G) ⧵ {v} withN(v) ⊆ N[A] we have |A| > (2∇ − 1)}.

Lemma 4.2. D1 ⊆ D̂ and hence |D1 ⧵D| ≤ �(G) ⋅ 
 .
Proof. If the open neighborhood of a vertex v cannot be dominated by 2∇ − 1 vertices from
V (G) ⧵ {v}, then in particular it cannot be dominated by 2∇ − 1 vertices from D ⧵ {v}. Hence
D1 ⊆ D̂ and we can bound the size of D1 by that of D̂.
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We mark the vertices ofD1 that we add to the dominating set in the first phase of the algorithm
as green, the neighbors ofD1 as yellow and leave all other vertices red. Denote the set of red vertices
by R, that is, R = V (G) ⧵N[D1]. For v ∈ V (G) letNR(v) ∶= N(v) ∩ R and dR(v) ∶= |NR(v)|be the residual degree of v, that is, the number of neighbors of v that still need to be dominated.

By definition of D1, the neighborhood of every non-green vertex can be dominated by at
most 2∇ other vertices. This holds true in particular for the subsetNR(v) of neighbors that stillneed to be dominated. Let us fix such a small dominating set for the red neighborhood of every
non-green vertex.

For every v ∈ V (G) ⧵D1, we fix Av ⊆ V (G) ⧵ {v} such that:
NR(v) ⊆ N[Av] and |Av| ≤ 2∇.

Additionally, for vertices v ∈ V (G) ⧵ D̂, we enforce that Av ⊆ D ⧵ {v}.

There are potentially many such sets Av – we fix one such set arbitrarily. Let us stress that we
cannot compute these sets in a local algorithm as the sets D and D̂ are not known to the algorithm.
We only use these sets for our further argumentation.

4.2. Limitations of the method

We can apply the above approach to obtain a small set D1 only if ∇1 is bounded by a constant.
For example in graphs of bounded degeneracy in general the number of vertices that dominate the
neighborhood of a vertex can only be bounded by 
(G). Hence, the approach based on covers and
pseudo-covers that is employed in the following cannot be extended to degenerate graph classes.
Below we show an example where this is the case.
Example 1. Let G(
, m) be the graph with vertices vi for 1 ≤ i ≤ 
 , wj for 1 ≤ j ≤ m and sji for
1 ≤ i ≤ 
, 1 ≤ j ≤ m. We have the edges {v1, wj} for 1 ≤ j ≤ m, hence v1 dominates all wj . We
have the edges {wj , sji } for all 1 ≤ i ≤ 
, 1 ≤ j ≤ m, hence, the sji are neighbors of wj . Finally,
we have the edges {vi, sji }, that is, vi dominates the ith neighbor of wj (see Example 1). Hence,
for m > 
 , G(
, m) has a dominating set of size 
 and m vertices whose neighborhood can be
dominated only by 
(G) vertices. Note that G(
, m) is 2-degenerate. As we can choose m arbitrary
large, we cannot usefully apply the method based on Lemma 4.2 for degenerate classes in general.

5. Phase 2: Reducing residual degrees – pseudo-covers and domination sequences

After the first phase of the algorithm we have established the situation that for every vertex
v ∈ V (G) ⧵D1 the residual neighborhood NR(v) is dominated by set Av ⊆ V (G) ⧵ {v} of size
at most 2∇. For all vertices of V (G) ⧵ D̂ we have chosen Av ⊆ D ⧵ {v}. Observe that the
set ⋃v∈V (G) Av has very good domination properties. First, already the sets Av for v ∈ D
dominate almost all vertices that remain to be dominated, except possibly the vertices of D itself:
We have R ⊆

⋃

v∈DNR[v] = D ∪
⋃

v∈DNR(v) = D ∪
⋃

v∈D Av, hence R ⧵ D ⊆
⋃

v∈D Av.Second,⋃v∈V (G) Av is small, as |⋃v∈V (G) Av| ≤
∑

v∈V (G) |Av| =
∑

v∈D̂ |Av|+
∑

v∈V (G)⧵D̂ |Av|.
So |⋃v∈V (G) Av| ≤ (�(G) + 1)
 ⋅ 2∇ + 
 ∈ (
).
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Figure 2: A 2-degenerate graph, where for many v ∈ V (G) the set N(v) can only be dominated by at least 
 vertices
different from v.

In the second phase of the algorithm we aim to find a good approximation of the sets Av. We
follow the approach of Czygrinow et al. [12] and define pseudo-covers, which describe candidate
vertices for the sets Av. We will then consider a selection process that can be carried out in parallel
for all vertices, which is based on the definition of domination sequences, and allows to select
a bounded number of candidate vertices. The domination properties of the selected vertices are
worse than that of the sets Av, however, at the end of the second phase we will be in the situation
that the residual degree of each vertex is bounded by an absolute constant depending only on the
graph class under consideration.
5.1. Pseudo-covers

Following the presentation of [12], we name and fix the following constants for the rest of this
article. The reason to choose the constants as given will become clear in the course of the proof.

� ∶= max{2∇0, 2∇},
� ∶= 1∕�,

� ∶= 2�∕� = 2�2,
� ∶= k� = 2�3.

Definition 5.1. A vertex z ∈ V (G) is �-strong for a vertex setW ⊆ V (G) if |N[z] ∩W | ≥ �|W |.
The following is the key definition by Czygrinow et al. [12].

Definition 5.2. A pseudo-cover (with parameters �, �, �, �) of a set W ⊆ V (G) is a sequence
(v1,… , vm) of vertices such that for every i ≤ m we have:

• m ≤ �,
• vi is �-strong forW ⧵

⋃

j<iN[vj],
• |N[vi] ∩ (W ⧵

⋃

j<iN[vj])| ≥ �, and
• |W ⧵

⋃

j≤mN[vj]| ≤ �.
12



Intuitively, all but at most � elements of the setW are covered by the (vi)i≤m. Additionally,each element vi of the pseudo-cover dominates both an �-fraction of the part ofW that is not yet
dominated by the vj for j < i, and at least � elements. Note that with our choice of constants, if
there are more than � vertices not covered yet, any vertex that covers a �-fraction of what remains
also covers at least � elements.

The next lemma shows how to derive the existence of pseudo-covers from the existence of
small dominating sets.

Lemma 5.1. LetW ⊆ V (G) be of size at least � and let Z be a dominating set ofW with �
elements. There exists an ordering of the vertices of Z as z1,… , z� and m ≤ � such that
(z1,… , zm) is a pseudo-cover ofW .

Proof. We build the order greedily by induction. We order the elements by neighborhood size,
while removing the neighborhoods of the previously ordered vertices. More precisely, assume that
(z1,… , zi) have been defined for some i ≥ 0. We then define zi+1 as the element that maximizes
|N[z] ∩ (W ⧵

⋃

j≤iN[zj])|.
Once we have ordered all vertices of Z, we define m as the maximal integer not larger than �

such that for every i ≤ m we have:
• zi is �-strong forW ⧵

⋃

j<iN[zj], and

• |N[zi] ∩ (W ⧵
⋃

j≤iN[zj])| ≥ �.
This ensures that (z1,… , zm) satisfies the first 3 properties of a pseudo-cover ofW . It only

remains to check the last one. To do so, we defineW ′ ≔ W ⧵
⋃

i≤mN[zi]. We want to prove
that |W ′

| ≤ �. Note that because Z covers W , if m = � we have W ′ = ∅ and we are done.
We can therefore assume that m < � andW ′ ≠ ∅. Since Z is a dominating set ofW , we also
know that (zm+1,… z�) is a dominating set ofW ′, therefore there is an element in (zm+1,… z�)that dominates at least a 1∕� fraction ofW ′. Thanks to the previously defined order, we know
that zm+1 is such an element. Since � = 1∕�, it follows that zm+1 is �-strong for W ′. This,
together with the definition of m, we have that |N[zi] ∩ (W ⧵

⋃

j≤iN[zj])| < � meaning that
|N[zm+1] ∩W ′

| < �. This implies that |W ′
|∕� < �. And since � = �∕�, we have |W ′

| < �.
Hence, (z1,… , zm) is a pseudo-cover ofW .

While there can exist unboundedly many dominating sets for a setW ⊆ V (G), a nice obser-
vation of Czygrinow et al. was that the number of pseudo-covers is bounded whenever the input
graph excludes some biclique Ks,t as a subgraph. We do not state the result in this generality, as it
leads to enormous constants. Instead, we focus on the case where small dominating sets Av exist,implying that ∇0(G), and therefore �, are bounded.

Lemma 5.2. LetW ⊆ V (G) of size at least �. Then there are less than �2 vertices that are
�-strong forW .

Proof. Assume that there is such a setW with |W | ≥ � and c many vertices that are �-strong
forW . LetH be the subgraph of G induced byW and the �-strong vertices. We first have that
|VH | ≤ |W | + c. Second we have that |EH | ≥ �|W |c − ∇0c, because there are c vertices thathave degree at least �|W | and there are at most ∇0c many vertices between them.
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We then have that |EH | ≤ ∇0|VH | hence �|W |c − ∇0c ≤ ∇0(|W | + c) from which we
derive c(�|W | − 2∇0) ≤ ∇0|W |. Now, using that |W | > � ≥ 2k2 we have �|W | > 2k > 4∇0.Hence �|W | − 2∇0 ≥ �|W |∕2. We can finally deduce that c(�|W |∕2) ≤ ∇0|W | and therefore
we have that c ≤ 2∇0∕� = �2.

This leads quickly to a bound on the number of pseudo-covers.
Lemma 5.3. For every W ⊆ V (G) of size at least �, the number of pseudo-covers is less
than �2� .
The proof of the lemma is exactly as the proof of Lemma 7 in the presentation of Czygrinow

et al. [12], we reprove it for the sake of completeness.
Proof. LetW a set of size at least �. For every i ≤ �, we define Ci as the set of partial pseudo-covers of W of size at most i, that is, all sets of at most i vertices that can be extended to a
pseudo-cover of W . So C� is the set of pseudo-covers of W while C1 only contains �-strong
vertices forW .

Lemma 5.2 implies that |C1| < �2. Lemma 5.2 also implies that for every i < �, we have
|Ci+1| < |Ci| ⋅ �2. We therefore conclude that |Ck| < (�2)� .

We write  (v) for the set of all pseudo-covers ofN(v) and (v) for the set of all vertices
that appear in a pseudo-cover ofN(v).

The proof of Lemma 5.3 also bounds the number (v).
Corollary 5.1. For every v ∈ V (G) with |NR(v)| > �, we have |(v)| ≤ �2� .

5.2. Domination sequences
We now turn to the use of pseudo-covers. We aim to carry out an iterative process in parallel

for all vertices v ∈ V (G) with a sufficiently large residual neighborhoodNR(v).
Definition 5.3. For any vertex v ∈ V (G), a �-dominating-sequence of v is a sequence (v1,… , vm)(without repetition) for which we can define sets B1,… , Bm such that:

• v1 = v, B1 ⊆ NR(v1),
• for every i ≤ m we have Bi ⊆ (NR(vi) ∩ Bi−1),
• |Bi| ≥ �s−i(t + s − i + (s − i)�)

• and for every i ≤ m we have vi ∈ (vi−1).
A �-dominating-sequence (v1,… , vm) is maximal if there is no vertex u such that (v1,… , vm, u)is a �-dominating-sequence.

Note that this definition requires |NR(v)| ≥ �s−1(t + s − 1 + (s − 1)�). For a vertex v with
a too small residual neighborhood, there are no �-dominating-sequences. We show two main
properties of these dominating-sequences. First, Lemma 5.4 shows that a maximal dominating
sequence must encounter D ∪ D̂ at some point. Second, with Lemmas 5.5 to 5.7, we show that
collecting all “end points” vm of all maximal dominating sequences results in a set D2 of sizelinear in the size of D. While D cannot be computed, we can compute D2.
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Lemma 5.4. Let v be a vertex and let (v1,… , vm) be a maximal �-dominating-sequence of v.
Then m < s and (D ∪ D̂) ∩ {v1,… , vm} ≠ ∅.

Proof. First, assume that v1, v2,… , vm is a maximal �-dominating-sequence with m ≥ s. By
definition, every vi with i ≤ s is connected to every vertex of Bs. For every 1 ≤ i ≤ s we have
|Bi| ≥ t and therefore |Bs| ≥ t. This shows that the two sets {v1,… , vs} and Bs form a Ks,t as
a subgraph in N2[v]. Since Ks,t is excluded as a subgraph in G, the process must stop having
performed at most s − 1 rounds.

We now have m < s and to prove the second statement we assume, in order to reach a
contradiction, that (D ∪ D̂) ∩ {v1,… , vm} = ∅. We have that Bm ⊆ N(vm), and remember that as
vm is not in D̂, we have thatNR(vm) can be dominated by at most � elements of D.

By Lemma 5.1, we can derive a pseudo-cover S = (u1,… , uj) ofNR(vm), where j ≤ � and
every ui is an element of D. Let X denote the set (of size at most �) of vertices not covered by S.
As S contains at most � vertices there must exist a vertex u in S that covers at least a 1∕� fraction
of Bm ⧵X. By construction, we have that |Bm| ≥ �s−m ⋅ (t+ s−m+ (s−m)�) ≥ �(t+ �) because
m < s. Therefore |Bm ⧵X| ≥ � and we have

|NR[u] ∩ Bm| ≥
|Bm| − �

�
≥ �s−m(t + s − m + (s − m)�) − �

�
,

hence

|NR[u] ∩ Bm| ≥
�s−m(t + s − m + (t − m − 1)�)

�
≥ �s−m−1(t + s − m + (t − m − 1)�),

and therefore
|NR(u) ∩ Bm| ≥ |NR[u] ∩ Bm| − 1 ≥ �s−m−1(t + s − m − 1 + (t − m − 1)�).

So we can continue the sequence (v1,… , vm) by defining vm+1 ∶= u; there is no repetition sinceby hypothesis D ∩ {v1,… , vm} = ∅, and by construction u ∈ D.
In conclusion if (v1,… , vm) is a maximal sequence, it contains an element of D or D̂.
Our next goal is to show that there are not many elements vm (which are the elements that we

pick into the set D2).
Lemma 5.5. For any maximal �-dominating-sequence (v1,… , vm), and for any i ≤ m − 1,
we have that

• vi+1 ∈ (vi), and
• |NR(vi)| ≥ �.

Proof. By construction we have vi+1 ∈ (vi), furthermore |Bi| ≥ �t−i(2t− i+ (t− i)�) ≥ � > �,
and Bi ⊆ NR(vi).

Now, for every v ∈ V (G) we compute all maximal �-dominating-sequences starting with v.
Obviously, as every vi in any �-dominating-sequences of v dominates some neighbors of G, we
can locally compute these steps after having learned the 2-neighborhoodN2[v] of every vertex in
two rounds in the LOCAL model of computation.
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We define D2 as the set of all u ∈ V (G) such that there is some vertex v ∈ V (G), and
some maximal �-dominating-sequence (v1,… , vm) of v with u = vm.

We now take a look at the size of D2. For a setW ⊆ V (G) we write (W ) =
⋃

v∈W (v).
Remember that the definition of (v) requires that |NR(v)| > �. We simply extend the notation
with (v) = ∅ if |NR(v)| ≤ �. We then define:

 (1)(W ) ∶= (W )

for 1 < i < s
 (i)(W ) ∶= ( (i−1)(W ))

and, for 1 ≤ i ≤ s
 (≤i)(W ) ∶=

⋃

1≤j≤i
 (j)(W ).

We are now ready to prove that D2 is small.
Lemma 5.6. D2 ⊆  (≤s)(D ∪ D̂).

Proof. Using Lemma 5.5 repetitively, for every �-dominating-sequence (v1,… , vm) we have that
vm ∈  (≤s)(v1), and, more generally, for every i ≤ m, we have that vm ∈  (≤s)(vi). Now the
statement follows from Lemma 5.4.

Lemma 5.7. |D2| ≤ (�2s�(�(G) + 1)
 .
Proof. Corollary 5.1 gives us that |(v)| ≤ �2� for every v ∈ V (G) with |N(v)| > �. As
(W ) ≤

∑

v∈W
|(v)|, we have P (W ) ≤ |W | ⋅ �2� . A simple induction yields that for i ≤ t,

| (≤i)(W )| ≤ ci|W |,

where c = �2� . With Lemma 5.6 we conclude
|D2| ≤ �2s� ⋅ |D ∪ D̂|.

We conclude with Lemma 4.1, stating that |D̂ ⧵D| ≤ �(G) ⋅ 
 .
We update the set R of vertices that still need to be dominated as V (G) ⧵N[D1 ∪D2] and theresidual neighborhoodsNR(v) = N(v) ∩R and residual degrees dR(v) = |NR(v)|. We prove next

that dR(v) is bounded by a constant.
Lemma 5.8. For every vertex v ∈ V (G) we have dR(v) < �s−1(t + s − 1 + (s − 1)�).

Proof. Assume, for the sake of reaching a contradiction, that there is a vertex v with dR(v) ≥
�s−1(t + s − 1 + (s − 1)�) and let B1 ∶= NR(v). Note that v ∉ D1 ∪D2, as the residual degree ofvertices from this set is 0. Exactly as in the proof of Lemma 5.4, since v ∉ D1, we have that B1can be dominated by at most � elements. Hence by Lemma 5.1, we can derive a pseudo-cover
S = (u1,… , uj) of B1, where j ≤ �. This leads to the existence of some vertex u in S that covers
at least a 1∕� fraction of B1 ⧵X for someX of size at most �. This yields a vertex v2, and a set B2.

16



We can then continue and build a maximal k-dominating-sequence (v1,… vm) of v. By
construction, this sequence has the property that every vi dominates some elements of B1. This istrue in particular for vm, but also we have that vm ∈ D2, hence a contradiction.

Let ΔR ∶= �s−1(t + s − 1 + (s − 1)�3).

As it remains to dominate the set R, let us fix a minimum dominating set DR of size 
R for R.

• Let DR ⊆ V (G) be a minimum dominating set of R and let 
R ∶= |DR|.
• Let � ∈ [0, 1] be such that |(D1 ∪D2) ∩D| = �
 .

Lemma 5.9. 
R ≤ (1 − �)
 .
Proof. D ⧵ (D1 ∪D2) is a dominating set for R, hence |DR| ≤ |D ⧵ (D1 ∪D2)|.

As every vertex of DR can dominate at most ΔR + 1 vertices (its ΔR residual neighbors and
itself), we have the following corollary.

Corollary 5.2. |R| ≤ (ΔR + 1)
R.

6. Phase 3: LP-based approximation in graphs of bounded maximum degree

6.1. LP-based approximation
In the light of Corollary 5.2, we could now simply choose R as the set D3 to get a constantfactor approximation. We can improve the bounds however, by proceeding with an LP-based

approximation. The dominating set problem can be formulated as an integer linear program (ILP).
Note that it remains to dominate the set R, which leads to the following ILP.

Minimize ∑

v∈V xv
Subject to ∑

u∈N[v] xu ≥ 1 ∀v ∈ R
xv ∈ {0, 1} ∀v ∈ V

By relaxing the condition that xv ∈ {0, 1} to xv ∈ [0, 1] ⊆ ℝ, we obtain the corresponding
linear program (LP). By a result of Bansal and Umboh [7] one can obtain a constant factor
approximation of a dominating set from a solution to the LP. The proof can easily be adapted to
the problem of approximating a dominating set of the set R.

Lemma 6.1. Assume G has an orientation with maximum out-degree d. Let (xv
)

v∈V (G) bea solution to the R-dominating set LP. Let H ∶= {v ∈ V (G) ∶ xv ≥ 1∕(2d + 1)} and let
U ∶= {v ∈ R ∶ v ∉ N[H]}. ThenH ∪ U dominates R and has size at most (2d + 1) ⋅ 
R.
Observe that when given the solution (

xv
)

v∈V (G) to the R-dominating set LP the lemma
gives rise to a simple LOCAL algorithm. First select all vertices v with xv ≥ 1∕(2d + 1) into adominating set and mark all their neighbors as dominated. Then select all non-dominated vertices
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of R into the dominating set. Clearly,H ∪ U is a dominating set of R. The rest of this section is
devoted to the proof of the claimed approximation factor. The proof follows the presentation of
Bansal and Umboh [7] with the improved bounds of Dvořák [18] (presented in Lemma 6.1). As
every solution to the ILP is also a solution to the LP we have∑v∈V (G) xv ≤ 
R.Consider an orientation of G such that the neighborhood of each vertex v is decomposed into
N in(v) andNout(v), where |Nout(v)| ≤ d.
⊳ Claim 1. For every vertex v ∈ U , we have (∑u∈N in(v) xu

)

≥ d∕(2d + 1).
Proof. As v is not in H , xv < 1∕(2d + 1). As v is not in N(H), for every vertex u ∈ Nout(v)
we have xu < 1∕(2d + 1). As |Nout(v)| ≤ d, and by the first LP condition (

∑

u∈N in(v) xu
)

≥
1 − 1

2d+1 −
d

2d+1 ≥ d
2d+1 .

We can now bound the size of U andH
⊳ Claim 2. |H ∪ U | ≤ (2d + 1)

∑

v∈V xv.
Proof. First, observe that |H| ≤ (2d + 1)

∑

v∈H
1

2d+1 ≤ (2d + 1)
∑

v∈H (xv). Then observe that
|U | ≤ 2d+1

d ⋅
∑

v∈U
d

2d+1 ≤ 2d+1
d

∑

v∈U
∑

u∈N in(v) xu ≤ 2d+1
d

∑

u∈N in(U )(d ⋅ xu) ≤ (2d +
1)
∑

u∈N in(U ) xu.
By definition of U , we have thatN(U ) andH are disjoint, this also holds forH andN in(U ),

hence |H ∪ U | ≤ (2d + 1)
∑

v∈V xv ≤ (2d + 1)
R.

6.2. Solving LPs locally
As shown by Kuhn et al. [36] we can locally approximate general covering LPs, in particular

the above R-dominating set LP, when the maximum degree of the graph is bounded. More
precisely, they show how to compute a Δ1∕r-approximation in (r2) rounds. Assuming for a
moment that Δ is bounded by an absolute constant we can choose r such that Δ1∕r = 1 + ", hence
r = (logΔ)∕(log(1 + ")), which is a constant depending only on Δ and " in order to compute a
(1 + ")-approximation for the R-dominating set LP.

Corollary 6.1. AssumeG has an orientation with maximum out-degree d. For every " > 0we
can compute a setD′ of size at most (2d+1)(1+")
R that dominatesR in(logΔ∕(log(1+"))
rounds in the LOCAL model.

6.3. From bounded residual degree to bounded degree
It remains to establish the situation that the maximum degree Δ of our graph is bounded. As

argued, we have |R| ≤ (ΔR + 1)
R. As only the vertices of R need to be dominated it suffices to
keep only the vertices that have a neighbor in R; other vertices are not useful as dominators. Also,
when two vertices u, v ∈ V (G) ⧵R have exactly the same neighbors in R, that is,NR(u) = NR(v),it suffices to keep one of u and v. Note that we can locally decide whetherNR(u) = NR(v). Forevery set N ⊆ R such that there is a vertex v with NR(v) = N we choose the one with the
lowest identifier as a representative. We construct the graph G′ consisting of R and all edges
between vertices in R as well as the set of all representatives and a minimal set of edges such that
NR(v) is equal in G and G′ for all representatives v. Hence in G′ we have NR(u) ≠ NR(v) forall u ≠ v ∈ V (G′) ⧵ R. As argued above, every R-dominating set in G can be transformed into
an R-dominating set of the same size in G′ (by choosing appropriate representatives) and every
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R-dominating set in G′ is an R-dominating set in G. We can hence continue to work with the
graph G′. In order to avoid complicated notation we simply assume that G = G′.

Note that in general we could have |V (G)| ∈ Ω(2|R|). When ∇1(G) bounded, however, itfollows from Lemma 4.3 of [23] that |V (G)| ≤ (4∇1 + 2∇1)|R|, which is is linear in |R|. This is
crucial for our further argumentation.

Corollary 6.2. |V (G)| ≤ (4∇1 + 2∇1)(ΔR + 1)
R.
6.4. Conclusion of the algorithm

Given any " > 0 we now select all vertices with high degree Γ = Γ(") into our dominating set,
where Γ is chosen such that there exist at most "
 vertices of degree at least Γ.

Let Γ ∶= 4∇1(4∇1 + 2∇1)(ΔR + 1)∕" and D13 ∶= {v ∈ V (G) ∶ d(v) > Γ}.

Lemma 6.2. |D13| ≤ ("∕2)
R.
Proof. We assume the opposite and count the number of edges of G. When we sum the degree of
the vertices, we get twice the number of edges. Hence 2 ⋅ |E(G)| > 2∇1(4∇1 + 2∇1)(ΔR + 1)
R.Therefore, with Corollary 6.2, |E(G)| > ∇1|V (G)|, a contradiction.

After picking D13 into the dominating set, marking the neighbors of D13 as dominated and
updating the set R, we can delete the vertices of D13. We are left with a graph of maximum
degree Γ.

Given " > 0, let D23 be the set computed by the LOCAL algorithm of Corollary 6.1 with
parameter "∕2.

Let D3 = D13 ∪D23. We already noted that the definition of D3 implies that D1 ∪D2 ∪D3 is adominating set of G. We now conclude the analysis of the size of this computed set.
Lemma 6.3. We have that |D3| ≤ (2∇0 + 1)(1 + ")
R.

Proof. By Lemma 3.2 G has an orientation with out-degree d ≤ ∇0. By Corollary 6.1 and
Lemma 6.2 we have |D23| ≤ (2∇0 + 1)(1 + "∕2)
R, and |D13| ≤ ("∕2)
R.

Now our main theorem, Theorem 2.1, follows by summing the sizes of D1, D2 and D3.
Lemma 6.4. |D1 ∪D2 ∪D3| ≤ 2(∇0 +1)(�2s� +2)
 . Hence, putting c = 2(∇1 +1), we have

|D1 ∪D2 ∪D3| ≤
(

c2c
2
+ c

)


.

Proof. We have
�(G) ≤ 2∇0(G) + 1 (by Lemma 3.1)
|D1| ≤ �(G)
 ≤ (2∇0 + 1)
 (by Lemma 4.2)
|D2| ≤ �2s�(�(G) + 1)
 ≤ �2s�(2∇0 + 2)
 (by Lemma 5.7)

19



Last, by setting " = 1 in Lemma 6.3 we have
|D3| ≤ (2∇0 + 1)(1 + ")
R ≤ 2(2∇0 + 1)
.

We conclude, as � ≤ 2∇1 + 2 and s ≤ 2∇1 + 1.

7. Alternative Phase 3: Greedy domination

We now consider an alternative approach for the third phase, which does not improve the
approximation factor, however, is conceptually much simpler and interesting in its own. Recall
that we bounded ΔR as �s−1(t + s − 1 + (s − 1)�), which is a bound on the residual degree dR(v)of all vertices.

We simulate the classical greedy algorithm, which in each round selects a vertex of maximum
residual degree. Here, we let all non-dominated vertices that have a neighbor of maximum
residual degree choose such a neighbor as its dominator (or if they have maximum residual degree
themselves, they may choose themselves). In general this is not possible for a LOCAL algorithm,
however, as we established a bound on the maximum degree we can proceed as follows. We let
i = ΔR. Every red vertex that has at least one neighbor of residual degree ΔR arbitrarily picks one
of them and elects it to the dominating set. Then every vertex recomputes its residual degree and i
is set to ΔR − 1. We continue until i reaches 0 when all vertices are dominated. More formally,
we define several sets as follows.

For ΔR ≥ i ≥ 0, for every v ∈ R in parallel:
If there is some u with dR(u) = i and ({u, v} ∈ E(G) or u = v), then
domi(v)← {u} (pick one such u arbitrarily),
domi(v)← ∅ otherwise.

• Ri ← R What currently remains to be dominated

• Pi ←
⋃

v∈R
domi(v) What we pick in this step

• R ← R ⧵N[Pi] Update red vertices

Last, D3 ← ⋃

1≤i≤d
Pi.

Let us first prove that the algorithm in fact computes a dominating set.
Lemma 7.1. When the algorithm has finished the iteration with parameter i ≥ 1, then all
vertices have residual degree at most i − 1.
In particular, after finishing the iteration with parameter 1, there is no vertex with residual de-

gree 1 left and in the final round all non-dominated vertices choose themselves into the dominating
set. Hence, the algorithm computes a dominating set of G.
Proof. By induction, before the iteration with parameter i, all vertices have residual at most i.
Assume v has residual degree i before the iteration with parameter i. In that iteration, all non-
dominated neighbors of v choose a dominator (possibly v, then the statement is trivial), hence, are
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removed from R. It follows that the residual degree of v after the iteration is 0. Hence, after this
iteration and before the iteration with parameter i − 1, we are left with vertices of residual degree
at most i − 1.

For the rest of this section analyze the size of D3 and we prove the following lemma.
Lemma 7.2. We have

|D3| ≤
(

∇0 ln
(2ΔR − 4∇0 + 1

2∇0 + 1

)

+ 3∇0 + 1
)


R.

Towards establishing the lemma we analyze the sizes of the sets Pi and Ri. The next lemma
follows from the fact that every vertex chooses at most one dominator.

Lemma 7.3. For every 0 ≤ i ≤ ΔR, ∑
j≤i

|Pj| ≤ |Ri|.

Proof. The vertices ofRi are those that remain to be dominated in the last i rounds of the algorithm.
As every vertex that remains to be dominated chooses at most one dominator in one of the rounds
j ≤ i, the statement follows.

As the vertices of DR that still dominate non-dominated vertices also have bounded residual
degree, we can conclude that not too many vertices remain to be dominated.

Lemma 7.4. For every 0 ≤ i ≤ ΔR, |Ri| ≤ (i + 1)
R.
Proof. First note that for every i,DR ⧵

⋃

j>i Pj is a dominating set forRi; additionally each vertexin this set has residual degree at most i. As every vertex dominates its residual neighbors and
itself, we conclude |Ri| ≤ (i + 1)
R.

Finally, we show that we cannot pick too many vertices of high residual degree. This follows
from a simply density argument. bounded edge density.

Lemma 7.5. For every 2∇0 < i ≤ ΔR, |Pi| ≤ ∇0
i−2∇0

(|Ri| − |Ri−1|).

Proof. Let 2∇0 < i ≤ ΔR be an integer. We bound the size of Pi by a counting argument, using
that G (as well as each of its subgraphs) have edge density at most ∇0.

Let J ∶= G[Pi] be the subgraph of G induced by the vertices of Pi, which all have residualdegree i. Let K ∶= G[Pi ∪ (N[Pi] ∩ Ri)] be the subgraph of G induced by the vertices of Pitogether with the red neighbors that these vertices dominate.
We have |E(J )| ≤ ∇0|V (J )| = ∇0|Pi|. As every vertex of J has residual degree exactly i,

we get |E(K)| ≥ iPi − |E(J )| ≥ (i − ∇0)|Pi| (we have to subtract |E(J )| to not count twice theedges of K that are between two vertices of J ). We also have |V (K)| ≤ |V (J )| + |N[Pi] ∩Ri|and |E(K)| ≤ ∇0|VK |, hence (i− 2∇0)|Pi| ≤ ∇0|N[Pi] ∩Ri)|. Now, as Ri−1 = Ri ⧵N[Pi], that
is,N[Pi] ∩ Ri = Ri ⧵ Ri−1, we get |Pi| ≤ ∇0

i−2∇0
(|Ri| − |Ri−1|).
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Let ri ∶= |Ri|∕
R and di ∶= |Pi|∕
R. Our goal is to maximize S ∶= ∑

0≤i≤ΔR di (which wehave to multiply by 
R in the end) under the constraints di ≥ 0 and
ri ≥

∑

j≤i
dj (0 ≤ i ≤ ΔR) (1)

ri ≤ i + 1 (0 ≤ i ≤ ΔR) (2)
di ≤

∇0
i − 2∇0

(ri − ri−1) (2∇0 < i ≤ ΔR) (3)

Wemay assume thatΔR ≥ 3∇0, as otherwise, Lemma 7.2 follows immediately fromLemma 7.3.
Let a be the minimum integer such that da > 0.
Lemma 7.6. We can assume ri = 0 for all i < a.

Proof. Putting ri = 0 for all i < a obviously preserves Equations (1) and (2). It also preserves
Equation (3) as the only case to check is i = a − 1 (if a ≥ 2∇0), for which the right hand side was
possibly increased.

Lemma 7.7. If a ≤ 3∇0 − 1, then decreasing da to 0 and ra to ra − da and increasing da+1 to
da + da+1 preserves all the constraints and the value of S.

Proof. The sum in Equation (1) does not change if i > a and Equation (1) is obviously satisfied
after modifications for i ≤ a. Equation (2) is trivially satisfied after modification, as no ri increases.The only changes for Equation (3) correspond to the case i = a − 1 (for which the left hand side
decreases, while the right hand side increases) or to the case i = a (for which the left hand side
increases by da, while the right hand side increases by ∇0∕(a + 1 − 2∇0) da ≥ da).

From the above lemmas, as ra ≥ da, it follows that we may assume a ≥ 3∇0 and ri = 0 for all
i < a.

Note that Equation (3) implies
r2∇0 ≤ r2∇0+1 ≤ ⋯ ≤ rΔR . (4)

Remark that increasing rΔR obviously preserves Equations (1) and (3). Hence, we can assume
that rΔR = ΔR + 1. Let b be minimum with ri = i + 1 for all i ≥ b. Note that b ≥ a.

Lemma 7.8. Let � = min(b − rb−1,∑j<b−1 dj). If b ≥ 3∇0 + 1, then increasing db−1 and
rb−1 by � and decreasing∑j<b−1 by � preserves the constraints and the value of S.

Proof. Equations (1) and (2) are obviously preserved. For Equation (3) we have to check the case
where i = b − 1 (for which the right hand side decreases by ∇0∕(b − 1 − 2∇0) � ≤ � and the left
hand side decreases by �) and the case i = b − 2 (for which the right hand side increases and the
left hand side decreases).

Applying this lemma, either we can reduce b to 3∇0 (hence b = a), or we force di = 0 for all
i < b − 1. Thus, a = b − 1 or a = b.

Lemma 7.9. We can assume that for every b < i ≤ ΔR we have di = ∇0∕(i − 2∇0).
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Proof. Indeed, as b ≥ a ≥ 3∇0, for b < i ≤ ΔR, Equations (1) to (3) reduce to di ≤ ∇0
i−2∇0

. Hence,
we can assume di = ∇0∕(i − 2∇0) if i > b.

Lemma 7.10. We can assume b = a.
Proof. Assume a = b− 1 and let � = b− ra. We have da ≤ ∇0

a−2∇0
(b− �) and db ≤ ∇0

b−2∇0
(1 + �).

If we increase ra to b, we can increase da by ∇0�
a−2∇0

and decrease db by ∇0�
b−2∇0

, while preserving
the constraints and increasing S.

Lemma 7.11. We can assume a = 3∇0.

Proof. Assume a ≥ 3∇0 + 1. By putting ra−1 = a we can increase da−1 by ∇0
a−1−2∇0

a and
decrease da by ∇0

a−2∇0
a. Note that the condition a ≥ 3∇0 + 1 implies that ∇0

a−1−2∇0
≤ 1, which is

needed to preserve Equation (1).
Now we have a = b = 3∇0 and we can put da = a + 1. Hence, the optimum is
di = 0 if i < 3∇0, d3∇0 = 3∇0 + 1 and d3∇0+i = ∇0∕(∇0 + i). Altogether, we get

S = 3∇0 + 1 + ∇0
ΔR−2∇0
∑

i=∇0+1

1
i
= ∇0(HΔR−2∇0 −H∇0 ) + 3∇0 + 1,

whereHi = 1 + 1∕2 +⋯ + 1∕i is the ith harmonic number.
It is known [13] that

1
24(n + 1)2

< Hn − ln
(

n + 1
2

)

−
 < 1
24n2

,

where 
 is the Euler–Mascheroni constant. We deduce that for n > m we have
− 1
24m2

< 1
24

( 1
(n + 1)2

− 1
m2

)

< (Hn −Hm) − ln
( 2n + 1
2m + 1

)

< 1
24

( 1
n2
− 1
(m + 1)2

)

≤ 0

we deduce
− 1
24∇20

< S −
(

∇0 ln
(2ΔR − 4∇0 + 1

2∇0 + 1

)

+ 3∇0 + 1
)

< 0.

Hence, with a (negative) error less than 0.042 we have

S ≈ ∇0 ln
(2ΔR − 4∇0 + 1

2∇0 + 1

)

+ 3∇0 + 1.

This finishes the proof of Lemma 7.2.

8. K3,t-free graphs

We now turn our attention to graphs that exclude K3,t for some t (and with bounded ∇1). Themost prominent graphs with these properties are graphs that embed into a surface of bounded
genus and in particular planar graphs.
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8.1. Phase 1: Preprocessing

The general preprocessing phase described in Section 4 remains unchanged. Recall that we de-
fined D1 as {v ∈ V (G) ∶ for all A ⊆ V (G) ⧵ {v} withN(v) ⊆ N[A] we have |A| > (2∇ − 1)}.
Recall as well that for every v ∈ V (G)⧵D1, we fixed Av ⊆ V (G)⧵ {v} such thatNR(v) ⊆ N[Av]and |Av| ≤ 2∇ − 1. Furthermore, for V (G) ⧵ D̂ we assumed Av ⊆ D ⧵ {v}.

8.2. Phase 2: local dominators in the K3,t-free case

In this second phase, things get simpler than in Section 5. Since we now assume that we
exclude K3,t the domination sequences of Definition 5.3 only have length two. We can therefore
simplify the analysis of the domination sequences. We simply select every pair of vertices with
sufficiently many neighbors in common.

• For v ∈ V (G) let Bv ∶= {z ∈ V (G) ⧵ {v} ∶ |NR(v) ∩NR(z)| ≥ (2∇ − 1)t + 1}.
• LetW be the set of vertices v ∈ V (G) such that Bv ≠ ∅.
• Let D2 ∶= ⋃

v∈W
({v} ∪ Bv).

Once D1 has been computed in the previous phase, 2 more rounds of communication are
enough to compute the sets Bv and D2. Before we update the residual degrees, let us analyze thesets Bv andD2. First note that the definition is symmetric: sinceNR(v)∩NR(z) = NR(z)∩NR(v)we have for all v, z ∈ V (G) if z ∈ Bv, then v ∈ Bz. In particular, if v ∈ D1 or z ∈ D1, then
NR(v) ∩NR(z) = ∅, which immediately implies the following lemma.

Lemma 8.1. We haveW ∩D1 = ∅ and for every v ∈ V (G) we have Bv ∩D1 = ∅.
Now we prove that for every v ∈ W , the set Bv cannot be too big, and has nice properties.
Lemma 8.2. For all vertices v ∈ W we have

• Bv ⊆ Av, (hence |Bv| ≤ (2∇ − 1)) and
• if v ∉ D̂, then Bv ⊆ D.

Proof. Assume Av = {v1,… , vl} (a set of possibly not distinct vertices) and assume there exists
z ∈ V (G) ⧵ {v, v1,… vl} with |NR(v) ∩NR(z)| ≥ (2∇ − 1)t+ 1. As v1,… , vl dominateNR(v),and hence also NR(v) ∩NR(z), and l ≤ (2∇ − 1), there must be some vi, 1 ≤ i ≤ l, with
|NR(v) ∩NR(z) ∩N[vi]| ≥ ⌈((2∇ − 1)t + 1)∕(2∇ − 1)⌉ ≥ t + 1. Therefore, |NR(v) ∩ NR(z) ∩
N(vi)| ≥ t, which shows that K3,t is a subgraph of G, contradicting the assumption.

If furthermore v ∉ D̂, by definition of D̂, we can find w1,… , wl from D that dominateN(v),
and in particular NR(v). If z ∈ V (G) ⧵ {v,w1,… , wl} with |NR(v) ∩NR(z)| ≥ (2∇ − 1)t + 1we can argue as above to obtain a contradiction.
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Let us now analyze the size of D2. For this we refine the set D2 and define

1. D12 ∶=
⋃

v∈W ∩D({v} ∪ Bv),

2. D22 ∶=
⋃

v∈W ∩(D̂⧵D)({v} ∪ Bv), and

3. D32 ∶=
⋃

v∈W ⧵(D∪D̂)({v} ∪ Bv).

Obviously D2 = D12 ∪D22 ∪D32. We now bound the size of the refined sets D12, D22 and D32.

Lemma 8.3. |D12 ⧵D| ≤ (2∇ − 1)
 .
Proof. We have

|D12 ⧵D| = |

⋃

v∈W ∩D
({v} ∪ Bv) ⧵D| ≤ |

⋃

v∈W ∩D
Bv| ≤

∑

v∈W ∩D
|Bv|.

By Lemma 8.2 we have |Bv| ≤ (2∇ − 1) for all v ∈ W and as we sum over v ∈ W ∩ D we
conclude that the last term has order at most (2∇ − 1)
 .

Lemma 8.4. D22 ⊆ D̂ and therefore |D22 ⧵D| < �(G)
 .

Proof. Let v ∈ D̂ ⧵ D and let z ∈ Bv. By symmetry, v ∈ Bz and according to Lemma 8.2, if
z ∉ D̂, then v ∈ D. Since this is not the case, we conclude that z ∈ D̂. Hence Bv ⊆ D̂ and, more
generally, D22 ⊆ D̂. Finally, according to Lemma 4.1 we have |D̂ ⧵D| < �(G)
 .

Finally, the set D32, which appears largest at first glance, was actually already counted, as
shown in the next lemma.

Lemma 8.5. D32 ⊆ D12.

Proof. If v ∉ D̂, then Bv ⊆ D by Lemma 8.2. Hence v ∈ Bz for some z ∈ D, and v ∈ D12.
Recall that we defined � ∈ [0, 1] to be such that |(D1 ∪D2) ∩D| = �
 .
Lemma 8.6. We have |D1 ∪D2| < �(G)
 + 2∇�
 .

Proof. By Lemma 8.5 we have D32 ⊆ D12, hence, D1 ∪ D2 = D1 ∪ D12 ∪ D
2
2. By Lemma 4.2

we have D1 ⊆ D̂ and by Lemma 8.4 we also have D22 ⊆ D̂, hence D1 ∪ D22 ⊆ D̂. Again by
Lemma 4.1, |D̂ ⧵D| < �(G)
 and therefore |(D1 ∪D22) ⧵D| < �(G)
 .We haveW ∩D ⊆ D12 ∩D, hence with Lemma 8.2 we conclude that

|

|

|

D12 ⧵D
|

|

|

≤ |

|

|

⋃

v∈D∩D12

Bv
|

|

|

≤
∑

v∈D∩D12

|Bv| ≤ (2∇ − 1)�
,

hence (D1 ∪D2)⧵D < �(G)
 +(2∇−1)�
 . Finally,D1 ∪D2 = (D1 ∪D2)⧵D∪ ((D1 ∪D2) ∩D)and with the definition of � we conclude |D1 ∪D2| < �(G)
 + 2∇�
 .
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We now update the residual degrees, that is, we update R as V (G) ⧵N[D1 ∪D2] and for everyvertex the number dR(v) = |NR(v)| accordingly.Just as before, we show that after the first two phases of the algorithm we are in the very nice
situation where all residual degrees are small.

Lemma 8.7. For all v ∈ V (G) we have dR(v) ≤ (2∇ − 1)2t + (2∇ − 1).
Proof. First, every vertex of D1 ∪D2 has residual degree 0. Assume that there is a vertex v of
residual degree at least (2∇ − 1)2t + (2∇ − 1) + 1. As v is not in D1, its residual neighbors aredominated by a set Av of at most (2∇ − 1) vertices. Hence there is a vertex z (not in D1 nor D2)with |NR(v)∩NR[z]| ≥ (2∇−1)t+2 = ((2∇−1)t+1)+1, hence, |NR(v)∩NR(z)| ≥ (2∇−1)t+1.This contradicts that v is not in D2.
8.3. Phase 3: LP-based approximation

We now proceed with the LP-based approximation as in the general case presented in Section 6.
Recall that for any desired " > 0 we defined Γ as an high degree and defined D13 as the set of allvertices with degree greater than Γ. We added D13 to the dominating set and were able to call the
LP-based approximation algorithm of Corollary 6.1. We finally obtained a set D3 dominating the
remaining vertices with |D3| ≤ (2∇0 + 1)(1 + ")
R according to Lemma 6.3.

We now conclude our main theorem, Theorem 2.2, stating that the algorithm on K3,t-freegraphs computes a dominating set of size at most (6∇1 + 3)
 .
Proof of Theorem 2.2. First,D1, D2, andD3 are computed locally, in a bounded number of rounds,
and additionally the set D1 ∪D2 ∪D3 dominates G. Then,

|D1 ∪D2| < �(G)
 + 2∇�
 (by Lemma 8.6)
≤ (2∇1 + 1)
 + 2∇1�
 (as �(G) ≤ 2∇1 + 1 and ∇ ≤ ∇1)

and
|D3| ≤ (2∇0 + 1)(1 + ")(1 − �)
 (by Lemma 6.3)

≤ (2∇1 + 1)(1 + ")(1 − �)
 (as ∇0 ≤ ∇1)
By choosing " = 1,
|D1 ∪D2 ∪D3| ≤ (2∇1 + 1 + 2∇1� + (4∇1 + 2)(1 − �))


≤ (6∇1 + 3)
 (maximized when � = 0)

8.4. Planar graphs
Finally, we complete the analysis of our algorithm for planar graphs, showing that it computes

an (11 + ")-approximation. In the following we fix a planar graph G.
Proof of Theorem 2.3. We revisit the proof of Theorem 2.2 and plug in the numbers for planar
graphs. For planar graphs we have K3,3 ⊈ G, ∇0 = 3, ∇ = 2 and � = 4, as stated in Lemma 3.1.
Therefore, by Lemma 8.6 we have |D1 ∪ D2| < 4
 + 4�
 and by Lemma 6.3 we have |D3| ≤
(7 + ")(1 − �)
 . Hence, |D1 ∪D2 ∪D3| ≤ 
(4 + 4� + 7 − 7� + " − "�) ≤ 
(11 + " − 3� − "�).
As � ∈ [0, 1], this is maximized when � = 0. Hence |D1 ∪D2 ∪D3| ≤ 
(11 + ").
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We now further restrict the input graphs, requiring e.g. planarity together with a lower bound
on the girth. Our algorithm works exactly as before, however, using different parameters. From
the different edge densities and Hall ratio of the restricted graphs we will then derive different
constants and as a result a better approximation factor. Throughout this section we use the same
notation as in the first part of the paper.

As in the general case in the first phase we begin by computing the set D1 and analyzing it in
terms of the auxiliary set D̂.

Corollary 8.1.
1. If G is bipartite, then |D̂ ⧵D| < 2
 .
2. If G is triangle-free, outerplanar, or has girth 5, then |D̂ ⧵D| < 3
 .

Proof. This is immediate from Lemma 3.1 and Lemma 4.1.
The inclusionD1 ⊆ D̂ continues to hold and the bound on the sizes as stated in the next lemma

is again a direct consequence of the corollary.

Lemma 8.8. We have D1 ⊆ D̂, and
1. if G is bipartite, then |D̂ ⧵D| < 2
 and |D̂| < 3
 .

2. if G is triangle-free, outerplanar, or has girth 5, then |D̂ ⧵D| < 3
 and |D̂| < 4
 .

In case of triangle-free planar graphs (in particular in the case of bipartite planar graphs) we
proceed with the second phase exactly as in the second phase of the general algorithm (Section 8.2),
however, the parameter (2∇ − 1)t + 1 is replaced by the parameter 7. In case of planar graphs of
girth at least five or outerplanar graphs, we simply set D2 = ∅.

If G is triangle-free:
• For v ∈ V (G) let Bv ∶= {z ∈ V (G) ⧵ {v} ∶ |NR(v) ∩NR(z)| ≥ 7}.
• LetW be the set of vertices v ∈ V (G) such that Bv ≠ ∅.
• Let D2 ∶= ⋃

v∈W
({v} ∪ Bv).

If G has girth at least 5 or G is outerplanar, let D2 = ∅.

Lemma 8.1 is based only on the definition of Bv andW and does not use particular properties
of planar graphs, hence, it also holds in the restricted case.

The next lemma uses the triangle-free property.
Lemma 8.9. If G is triangle-free, then for all vertices v ∈ W we have

• Bv ⊆ Av (hence |Bv| ≤ 3), and
• if v ∉ D̂, then Bv ⊆ D.
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Proof. Assume Av = {v1, v2, v3} and assume there is z ∈ V (G) ⧵ {v, v1, v2, v3} with |NR(v) ∩
NR(z)| ≥ 7. As the vertices v1, v2, v3 dominateNR(v), and henceNR(v) ∩NR(z), there must be
some vi, 1 ≤ i ≤ 3, with |NR(v) ∩NR(z) ∩N[vi]| ≥ ⌈7∕3⌉ ≥ 3. Then on of the following holds:
either |NR(v) ∩NR(z) ∩N(vi)| ≥ 3, or |NR(v) ∩NR(z) ∩N(vi)| = 2. The first case shows that
K3,3 is a subgraph of G contradicting the assumption that G is planar. The second case implies
that vi ∈ NR(v). In this situation, by picking w ∈ NR(v) ∩NR(z) ∩N(vi), we get that (v, vi, w)is a triangle, hence we also reach a contradiction.

If furthermore v ∉ D̂, by definition of D̂, we can find w1, w2, w3 from D that dominateN(v),
and in particularNR(v). If z ∈ V (G) ⧵ {v,w1, w2, w3} with |NR(v) ∩NR(z)| ≥ 7 we can argueas above to obtain a contradiction.

For our analysis we again split D2 into three sets D12, D22 and D32. The next lemmas hold also
for the restricted cases. We repeat them for convenience with the appropriate numbers filled it.

Lemma 8.10. If G is triangle-free, then |D12 ⧵D| ≤ 3
 .

Lemma 8.11. If G is triangle-free, then D22 ⊆ D̂ and therefore |D22 ⧵D| < 3
 .

Lemma 8.12. If G is triangle-free, then D32 ⊆ D12.
Recall that � ∈ [0, 1] is such that |(D1 ∪D2) ∩D| = �
 .
Lemma 8.13.

1. If G is bipartite, then |D1 ∪D2| < 2
 + 4�
 .
2. If G is triangle-free, then |D1 ∪D2| < 3
 + 4�
 .
3. If G has girth at least 5 or is outerplanar, then |D1 ∪D2| < 3
 + �
 .

Proof. If G is outerplanar or G has girth at least 5, then D2 = ∅. By Lemma 8.8 we have D1 ⊆ D̂and |D̂ ⧵D| < 3
 , hence (D1 ∪D2) ⧵D < 3
 .
If G is triangle-free, by Lemma 8.12 we have D32 ⊆ D12, hence, D1 ∪D2 = D1 ∪D12 ∪D22. By

Lemma 8.8 we have D1 ⊆ D̂ and by Lemma 8.11 we also have D22 ⊆ D̂, hence D1 ∪ D22 ⊆ D̂.
Again by Lemma 8.8, ifG is bipartite, then |D̂⧵D| < 2
 , therefore |(D1∪D22)⧵D| < 2
 , and ifG
is triangle-free, then |D̂ ⧵D| < 3
 , therefore |(D1 ∪D22) ⧵D| < 3
 . We haveW ∩D ⊆ D12 ∩D,
hence with Lemma 8.9 we conclude that

|

|

|

D12 ⧵D
|

|

|

≤ |

|

|

⋃

v∈D∩D12

Bv
|

|

|

≤
∑

v∈D∩D12

|Bv| ≤ 3�
,

hence (D1∪D2)⧵D < 2
+3�
 ifG is bipartite and (D1∪D2)⧵D < 3
+3�
 ifG is triangle-free.
Finally, D1 ∪D2 = (D1 ∪D2) ⧵D ∪ (D1 ∪D2) ∩D and with the definition of � we conclude
1. |D1 ∪D2| < 2
 + 4�
 if G is bipartite,
2. |D1 ∪D2| < 3
 + 4�
 if G is triangle-free,
3. |D1 ∪D2| < 3
 + �
 if G has girth at least 5 or is outerplanar.
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Again, we update the residual degrees, that is, we update R as V (G) ⧵N[D1 ∪D2] and forevery vertex the number dR(v) = N(v) ∩ R accordingly and proceed with the third phase.
Lemma 8.14.

1. If G is triangle-free, then ΔR(v) ≤ 18.

2. If G has girth at least 5, then ΔR(v) ≤ 3.

3. If G is outerplanar, then ΔR(v) ≤ 9.

Proof. Every vertex of D1 ∪D2 has residual degree 0, hence, we need to consider only verticesthat are not in D1 or D2.First assume that the graph is triangle-free and assume that there is a vertex v of residual
degree at least 19. As v is not inD1, its 19 non-dominated neighbors are dominated by a set Av ofat most 3 vertices. Hence, there is vertex z (not in D1 nor D2) dominating at least ⌈19∕3⌉ = 7 of
them. Here, z cannot be one of these 7 vertices, otherwise it would be connected to v and there
would be a triangle in the graph. Therefore we have |NR(v) ∩NR(z)| ≥ 7, contradicting that v is
not in D2.Now assume that G has girth at least 5 and assume that there is a vertex v of residual degree at
least 4. As v is not in D1, its 4 non-dominated neighbors are dominated by a set Av of at most 3
vertices. Hence, there is vertex z (not in D1 nor D2) dominating at least ⌈4∕3⌉ = 2 of them. Here,
z cannot be one of these 2 vertices, otherwise it would be connected to v and there would be a
triangle in the graph. However, z can also not be any other vertex, as otherwise we find a cycle of
length 4, contradicting that G has girth at least 5.

Finally, assume that G is outerplanar and assume that there is a vertex v of residual degree
at least 10. As v is not in D1, its 10 non-dominated neighbors are dominated by a set Av of atmost 3 vertices. Hence, there is vertex z (not in D1 nor D2) dominating at least ⌈10∕3⌉ = 4 of
them. Therefore |N(v) ∩N(z)| ≥ 3, and we find a K2,3 as a subgraph, contradicting that G is
outerplanar.

We proceed with the LP-based approximation as in the general case presented in Section 6.
Recall that for any desired " > 0 we defined Γ as an high degree and defined D13 as the set of allvertices with degree greater than Γ. We added D13 to the dominating set and were able to call the
LP-based approximation algorithm of Corollary 6.1. We finally obtained a set D3 dominating
the remaining vertices with |D3| ≤ (2∇0 + 1)(1 + "∕5)
R according to Lemma 6.3 (by applying
it with "′ = "∕5). The second item does not follow by the LP approximation, but simply from
Lemma 8.14 and Corollary 5.2.

Lemma 8.15.
1. If G is triangle-free, then |D3| ≤ 5(1 + "∕5)
R.

2. If G has girth at least 5, then |D3| ≤ 4
R.

3. If G is outerplanar, then |D3| ≤ 5(1 + "∕5)
R.
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We conclude.
Theorem 8.1. There exists a distributed LOCAL algorithm that, for every triangle free planar
graphG, computes in a constant number of rounds a dominating set of size at most (8+")
(G).

Proof. We have
|D1 ∪D2| < 3
 + 4�
 (by Lemma 8.13)

|D3| ≤ 5(1 + "∕5)
R ≤ 5(1 + "∕5)(1 − �)
 (by Lemma 8.15)
Thus,

|D1 ∪D2 ∪D3| < 8
 − 5�
 + "
 − "�

≤ (8 + ")
 (maximized when � = 0)

The remaining theorems are proved analogously.
Theorem 8.2. There exists a distributed LOCAL algorithm that, for every bipartite planar
graphG, computes in a constant number of rounds a dominating set of size at most (7+")
(G).
Theorem 8.3. There exists a distributed LOCAL algorithm that, for every planar graph G
of girth at least 5, computes in a constant number of rounds a dominating set of size at
most 7
(G).
Theorem 8.4. There exists a distributed LOCAL algorithm that, for every outerplanar graphG,
computes in a constant number of rounds a dominating set of size at most (8 + ")
(G).

9. Conclusion

We simplified the presentation and generalized the algorithm of Czygrinow et al. [12] from
graph classes that exclude some topological minor to graph classes C where ∇1(G) is boundedby an absolute constant for all G ∈ C . This is a property in particular possessed by classes with
bounded expansion, which include many commonly studied sparse graph classes. The obtained
general bounds are still large, but by magnitudes smaller than those obtained in the original work
of Czygrinow et al.[12].

It is an interesting and important question to identify the most general graph classes on which
certain algorithmic techniques work. The key argument of Lemma 4.1 works only for classes
with ∇1(G) bounded by an absolute constant. We need different methods to push towards classes
with only ∇0(G) bounded, which are the degenerate classes.We then provided a fine-tuned LOCAL algorithm that computes an (11 + ")-approximation
of a minimum dominating set in a planar graph in a constant number of rounds. Started with
different parameters, the algorithm works also for several restricted cases of planar graphs. We
showed that it computes an (8 + ")-approximation for triangle-free planar graphs, a (7 + ")-
approximation for bipartite planar graphs, a 7-approximation for planar graphs of girth 5 and an
(8 + ") -approximation for outerplanar graphs. In all cases except for the outerplanar case, where
an optimal bound of 5 was already known, our algorithm improves on the previously best known
approximation factors. This improvement is most significant in the case of general planar graphs,
where the previously best known factor was 52.
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